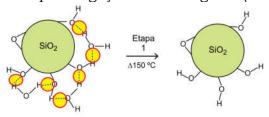

UNISA MEDICINA 2020 - Primeiro semestre UNIVERSIDADE DE SANTO AMARO

01. A sequência apresentada na figura mostra a modificação da superfície da sílica gel (dióxido de silício) para fins variados.

(Alexandre G. S. Prado *et al.* "Aplicação e modificação química da sílica gel obtida de areia". *Quím. Nova*, vol. 28, no 3. Adaptado.)


O oxicloreto de fósforo $(POC\ell_3)$, utilizado na segunda etapa da reação, é uma substância que reage violentamente com a água, produzindo ácido clorídrico $(HC\ell)$ e ácido fosfórico (H_3PO_4) , devendo ser manipulado com cuidado.

- **a)** Qual o nome da ligação indicada pela seta vermelha? Qual o nome das ligações rompidas na etapa 1?
- **b)** O reagente orgânico utilizado na etapa 3 da reação pertence a qual função orgânica? Escreva a equação balanceada que representa a reação do $POC\ell_3$ com a água.

Resolução:

a) Nome da ligação indicada pela seta vermelha $\left(O \underbrace{\longrightarrow}_{Ligação} H\right)$: ligação covalente.

Nome das ligações rompidas na etapa 1: ligações de hidrogênio (ou pontes de hidrogênio).

b) Função orgânica do reagente orgânico utilizado na etapa 3 $(H_2N-CH_2-CH_2-NH_2)$: amina.

De acordo com o texto do enunciado o oxicloreto de fósforo $(POC\ell_3)$ é uma substância que reage violentamente com a água, produzindo ácido clorídrico $(HC\ell)$ e ácido fosfórico (H_3PO_4) . Então, a equação balanceada que representa a reação do $POC\ell_3$ com a água pode ser representada por:

$$POC\ell_3 + H_2O \longrightarrow HC\ell + H_3PO_4$$

02. O ácido benzoico, em sua forma não ionizada, é utilizado como conservante de alimentos. Em água, esse ácido sofre ionização conforme a equação a seguir:

OCO OH OCC OT
$$HBz$$
 HBz Bz Bz

- **a)** A ação conservante do ácido benzoico é favorecida em meio ácido, básico ou neutro? Justifique sua resposta com base no princípio de Le Chatelier.
- **b)** Escreva a expressão do K_i para o ácido benzoico. Calcule o pH de uma solução de ácido benzoico que apresenta $\lceil HBz \rceil = \lceil Bz^- \rceil$.

Resolução:

a) A ação conservante do ácido benzoico é favorecida em meio ácido, pois neste caso o equilíbrio desloca para a esquerda favorecendo a formação da forma não ionizada.

b) Expressão do K_i para o ácido benzoico:

$$K_{i} = \frac{\begin{bmatrix} Bz^{-} \end{bmatrix} \times \begin{bmatrix} H^{+} \end{bmatrix}}{\begin{bmatrix} HBz \end{bmatrix}} \quad \text{ou} \quad K_{i} = \frac{\begin{bmatrix} Gz^{-} \end{bmatrix} \times \begin{bmatrix} H^{+} \end{bmatrix}}{\begin{bmatrix} Gz^{-} \end{bmatrix}}$$

Cálculo do pH de uma solução de ácido benzoico que apresenta $\lceil HBz \rceil = \lceil Bz^- \rceil$:

$$\begin{split} K_i &= \frac{\left \lceil Bz^- \right \rceil \times \left \lceil H^+ \right \rceil}{\left \lceil HBz \right \rceil}; \quad K_i = 10^{-4} \\ \left \lceil HBz \right \rceil &= \left \lceil Bz^- \right \rceil = \mathfrak{M} \\ 10^{-4} &= \frac{\mathfrak{M} \times \left \lceil H^+ \right \rceil}{\mathfrak{M}} \\ \left \lceil H^+ \right \rceil &= 10^{-4} \\ pH &= -log \left \lceil H^+ \right \rceil \implies pH = -log 10^{-4} \\ pH &= 4 \end{split}$$

03. Cereais matinais enriquecidos com ferro contêm uma pequena quantidade de ferro metálico em sua composição. Ao entrar em contato com o suco gástrico, os átomos de ferro são transformados em íons Fe²⁺, que podem ser absorvidos pelo organismo e utilizados no combate à anemia. Considere que uma porção de cereal contenha 3,36×10⁻³ g de ferro metálico, que reagem com o ácido clorídrico presente no suco gástrico, de acordo com a equação:

$$\text{Fe } + x \, \text{HC}\ell \longrightarrow \text{FeC}\ell_x \, + \, \frac{x}{2} \text{H}_2$$

- a) Identifique o agente oxidante na reação do ferro com o ácido clorídrico. Considerando a constante de Avogadro igual a 6×10²³ mol⁻¹, calcule o número de átomos de ferro consumidos por um indivíduo que come uma porção de cereal matinal.
- b) Escreva a fórmula do cloreto de ferro formado na reação entre esse metal e o ácido clorídrico. Calcule a massa de ácido clorídrico consumida na digestão do ferro presente em uma porção de cereal matinal.

Resolução:

a) Agente oxidante na reação do ferro com o ácido clorídrico: HCl (ácido clorídrico).

$$Fe \Rightarrow Nox(Fe) = 0$$

$$FeC\ell_x \Rightarrow Nox(Fe) = +x$$

$$\text{Fe} \ + \ x \, \text{HC}\ell \longrightarrow \text{FeC}\ell_x \ + \ \frac{x}{2} \text{H}_2$$

$$Fe \xrightarrow{oxidação} Fe^{x+} + xe^{-}$$
 (Fe é agente redutor)

$$xH^+ + xe^- \xrightarrow{Redução} \frac{x}{2}H_2$$
 (HC ℓ é agente oxidante)

Cálculo do número de átomos de ferro consumidos:

$$m_{\rm Fe} = 3.36 \times 10^{-3} \text{ g}$$

Fe = 55,8 (vide tabela periódica fornecida)

$$M_{Fe} = 55,8 \text{ g.mol}^1$$

1 mol de Fe —
$$6 \times 10^{23}$$
 átomos de Fe

Então:

Então :
$$55.8 \ g ------ 6 \times 10^{23} \ \text{ átomos de Fe} \\ 3.36 \times 10^{-3} \ g ------- n_{\text{átomos de Fe}}$$

$$3,36\times10^{-3}$$
 g — $n_{\text{átomos de Fe}}$

$$3,36\times10^{-3}~g \xrightarrow{\hspace*{4cm}} n_{\text{átomos de Fe}}$$

$$n_{\text{átomos de Fe}} = \frac{3,36\times10^{-3}~g\times6\times10^{23}~\text{átomos de Fe}}{55,8~g} \Rightarrow n_{\text{átomos de Fe}} = 3,6\times10^{19}~\text{átomos de Fe}$$

b) Fórmula do cloreto de ferro formado na reação entre esse metal e o ácido clorídrico: $FeC\ell_2$.

$$\text{Fe} \Rightarrow \text{Fe}^{2+} \Rightarrow \text{x} = 2; \quad \text{Fe}^{2+} \text{ Fe}^{2+} \text{ C}\ell^- \text{ C}\ell^- \Rightarrow \text{FeC}\ell_2$$

$$\text{Fe } + 2 \text{HC}\ell \longrightarrow \text{FeC}\ell_2 \ + \ \text{H}_2$$

Cálculo da massa de ácido clorídrico consumida:

Fe = 55,8 (
$$M_{Fe} = 55,8 \text{ g.mol}^{-1}$$
); $HC\ell = 1,01+35,5=36,51 \text{ (}M_{HC\ell} = 36,51 \text{ g.mol}^{-1}\text{)}.$

$$55,8 \text{ g} - 2 \times 36,51 \text{ g}$$

$$3,36\!\times\!10^{-3}~g\!-\!\!-\!\!-\!\!-m_{HC\ell}$$

$$m_{HC\ell} = \frac{3,36 \times 10^{-3} \text{ g} \times 2 \times 36,51 \text{ g}}{55,8 \text{ g}} \Rightarrow m_{HC\ell} = 4,4 \times 10^{-3} \text{ g}$$

PROFESSORA SONIA

04. Combustíveis fósseis, como o óleo diesel, contêm enxofre como impureza, que é oxidado a dióxido de enxofre durante o processo de combustão. A reação entre o dióxido de enxofre formado e o ozônio, presente na atmosfera, produz o trióxido de enxofre, conforme a equação:

$$SO_2 + O_3 \longrightarrow SO_3 + O_2$$

Um estudo cinético avaliou a influência da concentração dos reagentes sobre a velocidade da reação. Os resultados obtidos estão apresentados na tabela:

Experimento	[SO ₂] (mol/L)	[O ₃] (mol/L)	Velocidade inicial (mol/L·s)					
A	0,1	0,1	0,018					
В	0,2	0,1	0,072					
С	0,2	0,2	0,072					
D	X	0,2	0,288					

Uma proposta para o mecanismo da reação é:

 $2SO_2 \longrightarrow SO_3 + SO$ Etapa 1:

 $O_3 \longrightarrow O_2 + O \bullet$ SO + O • \longrightarrow SO₂ Etapa 2:

Etapa 3:

a) Equacione a reação de formação do dióxido de enxofre. Com base nos dados da tabela, determine o valor de x.

b) Escreva a equação que representa a lei da velocidade para a reação entre o dióxido de enxofre e o ozônio. Qual das etapas do mecanismo proposto para a reação é a mais lenta?

Resolução:

a) De acordo com o texto do enunciado da questão, combustíveis fósseis contêm enxofre como impureza que é oxidado a dióxido de enxofre durante o processo de combustão.

Equacionamento da reação de formação do dióxido de enxofre: $S + O_2 \longrightarrow SO_2$.

O valor de x na tabela é 0,4. Justificativa:

Experimento	$\left[\mathrm{SO}_2\right]\left(\mathrm{mol}/\mathrm{L}\right)$	$[O_3]$ (mol/L)	Velocidade inicial (mol/L·s)					
A	0,1	0,1	0,018					
В	0,2	0,1	0,072					
C	0,2	0,2	0,072					
D	X	0,2	0,288					

$$v = k[SO_2]^a \times [O_3]^b$$

$$0,072 = k(0,2)^a \times (0,1)^b$$
 (Experimento B)

$$0.018 = k(0.1)^a \times (0.1)^b$$
 (Experimento A)

Dividindo B por A, vem:

$$\frac{0,072}{0,018} = \frac{\cancel{k} (0,2)^{a} \times (0,1)^{b}}{\cancel{k} (0,1)^{a} \times (0,1)^{b}}$$

$$4 = \frac{(0,2)^a}{(0,1)^a} \Rightarrow 2^2 = \left(\frac{0,2}{0,1}\right)^a \Rightarrow 2^a = 2^2$$

$$a = 2$$

$$v = k[SO_2]^a \times [O_3]^b$$

$$0.072 = k(0.2)^a \times (0.2)^b$$
 (Experimento C)

$$0.072 = k(0.2)^a \times (0.1)^b$$
 (Experimento B)

Dividindo C por B, vem:

$$\frac{0,072}{0,072} = \frac{\cancel{\cancel{k}} (0,\cancel{2})^{a} \times (0,2)^{b}}{\cancel{\cancel{k}} (0,\cancel{2})^{a} \times (0,1)^{b}}$$

$$1 = \frac{(0,2)^b}{(0,1)^b} \Rightarrow 2^0 = \left(\frac{0,2}{0,1}\right)^b \Rightarrow 2^b = 2^0$$

b = 0

$$Ent\tilde{a}o: \ v = k\big[SO_2\big]^a \times \big[O_3\big]^b \ \Rightarrow \ v = k\big[SO_2\big]^2 \times \underbrace{\big[O_3\big]^0}_{i}$$

$$v = k[SO_2]^2$$

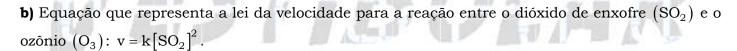
Utilizando o experimento A:

$$v = k[SO_2]^2$$

$$0.018 = k(0.1)^2$$

$$k = \frac{0,018}{\left(0,1\right)^2} = 1,8$$

Para o experimento D:


$$v = k[SO_2]^2 \implies 0.288 = 1.8[SO_2]^2$$

$$\left[SO_2\right]^2 = \frac{0,288}{1,8}$$

$$[SO_2]^2 = 0.16$$

$$[SO_2] = \sqrt{0.16}$$

$$[SO_2] = 0,4 \text{ mol}/L$$

A etapa mais lenta é aquela que determina a velocidade da reação. Como a equação da velocidade é $v = k \underbrace{\left[SO_2\right]^2}_{\text{Reagente}}$, conclui-se que o reagente desta etapa é o SO_2 , ou seja, a etapa mais lenta é a 1.

$$2SO_2 \longrightarrow SO_3 + SO$$
 (Etapa 1)

PROFESSORA SONIA

1						T	ABELA I	PERIÓDI	CA								18
1 H hidrogênio 1,01	2											13	14	15	16	17	2 He helio 4,00
3 Li litio 6,94	4 Be berilio 9,01											5 B boro 10,8	6 C carbono 12,0	7 N nitrogênio 14,0	8 O oxigênio 16,0	9 F flúor 19,0	10 Ne neônio 20,2
11 Na sódio 23,0	12 Mg magnésio 24,3	3	4	5	6	7	8	9	10	11	12	13 Al aluminio 27,0	14 Si silicio 28,1	15 P fósforo 31,0	16 S enxofre 32,1	17 CI cloro 35,5	18 Ar argônio 40,0
19 K potássio 39,1	20 Ca cálcio 40,1	21 Sc escândio 45,0	22 Ti titânio 47,9	23 V vanádio 50,9	24 Cr crômio 52,0	25 Mn manganès 54,9	26 Fe ferro 55,8	27 Co cobalto 58,9	28 Ni niquel 58,7	29 Cu cobre 63,5	30 Zn zinco 65,4	31 Ga gálio 69,7	32 Ge germânio 72,6	33 As arsênio 74,9	34 Se selênio 79,0	35 Br bromo 79,9	36 Kr criptônio 83,8
37 Rb rubídio 85,5	38 Sr estrôncio 87,6	39 Y Itrio 88,9	40 Zr zircônio 91,2	41 Nb nióbio 92,9	42 Mo molibdênio 96,0	43 Tc tecnécio	44 Ru rutênio 101	45 Rh ródio 103	46 Pd paládio 106	47 Ag prata 108	48 Cd cádmio 112	49 In indio 115	50 Sn estanho 119	51 Sb antimônio 122	52 Te telúrio 128	53 I iodo 127	54 Xe xenônio 131
55 Cs césio 133	56 Ba bário 137	57-71 lantanoides	72 Hf háfnio 178	73 Ta tântalo 181	74 W tungstênio 184	75 Re rênio 186	76 Os osmio 190	77 Ir iridio 192	78 Pt platina 195	79 Au ouro 197	80 Hg mercúrio 201	81 TI tálio 204	82 Pb chumbo 207	83 Bi bismuto 209	84 Po polônio	85 At astato	86 Rn radônio
87 Fr frâncio	88 Ra rádio	89-103 actinoides	104 Rf rutherfórdio	105 Db důbnio	106 Sg seabórgio	107 Bh bóhrio	108 Hs hássio	109 Mt meitnério	110 Ds darmstádio	111 Rg roentgênio	112 Cn copernicio	113 Nh nihônio	114 FI fleróvio	115 Mc moscóvio	116 Lv livermório	117 Ts tenessino	118 Og oganessônie

núr	nero atômico Símbolo
	nome
ma	ssa atômica

57 La lantânio 139	58 Ce cério 140	59 Pr praseodímio 141	60 Nd neodimio 144	61 Pm promécio	62 Sm samário 150	63 Eu európio 152	64 Gd gadolinio 157	65 Tb térbio 159	66 Dy disprésio 163	67 Ho hólmio 165	68 Er érbio 167	69 Tm túlio 169	70 Yb itérbio 173	71 Lu lutécio 175
89 Ac actínio	90 Th tório 232	91 Pa protactínio 231	92 U urânio 238	93 Np neptúnio	94 Pu plutônio	95 Am americio	96 Cm cúrio	97 Bk berquélio	98 Cf califórnio	99 Es einstênio	100 Fm férmio	101 Md mendelévio	102 No nobélio	103 Lr laurêncio

Notas: Os valores de massas atômicas estão apresentados com três algarismos significativos. Não foram atribuídos valores às massas atômicas de elementos artificiais ou que tenham abundância pouco significativa na natureza. Informações adaptadas da tabela IUPAC 2016.

