UNICID 2015 - MEDICINA - Segundo Semestre UNIVERSIDADE CIDADE DE SÃO PAULO

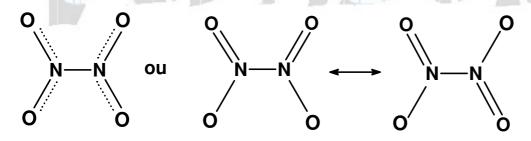
01.

Lançamento do Satélite CBers-4

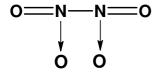
O satélite sino-brasileiro CBers-4 foi lançado pelo foguete chinês Longa Marcha 4B, composto de três estágios que utilizam como combustível líquido a hidrazina (N_2H_4) e o tetróxido de dinitrogênio (N_2O_4) , um dímero do dióxido de nitrogênio.

(www.lqes.iqm.unicamp.br. Adaptado.)

- **a)** Apresente a estrutura de Lewis para a hidrazina e a fórmula estrutural para o tetróxido de dinitrogênio.
- **b)** O dímero empregado como combustível do foguete é produzido segundo o equilíbrio representado pela equação não balanceada:


$$NO_2(g) \iff N_2O_4(g) \quad \Delta H < 0$$

Efetue o balanceamento da equação e explique se o aumento da temperatura leva a um favorecimento da formação do dímero.


Resolução:

a) Estrutura de Lewis para a hidrazina:

Fórmula estrutural plana para o tetróxido de dinitrogênio (N2O4):.

Observação teórica: utilizando a notação das "setas", encontrada em vários livros didáticos, a representação abaixo poderia ser aceita.

b) Balanceando, vem:

$$2NO_{2}(g) \xleftarrow{\text{Exotérmica} \atop T^{\downarrow}} 1N_{2}O_{4}(g) \quad \Delta H < 0$$

O aumento da temperatura desfavorece a formação do dímero (N_2O_4) , pois esta reação é exotérmica, ou seja, é favorecida pela diminuição da temperatura.

02. Dentre os muitos contaminantes da água, os mais perigosos são os íons de metais como chumbo, **ferro**, **níquel**, **cobre** e cádmio.

(www.unicamp.br. Adaptado.)

- **a)** Considerando os elementos químicos destacados no texto, qual é o de maior raio atômico? Justifique sua resposta.
- **b)** A galena é o principal mineral do qual o chumbo é extraído. Uma das etapas de extração desse metal é representada pela equação:

$$2PbS(s) + 3O_2(g) \longrightarrow 2PbO(s) + 2SO_2(g)$$

Considerando a utilização de 2,0 t de galena e que este mineral apresenta teor aproximado de 80 % em PbS, calcule a massa, em toneladas, de óxido de chumbo (II) formada. Apresente os cálculos efetuados.

Resolução:

a) O raio atômico, a partir da classificação periódica, aumenta da direita para a esquerda num mesmo período (devido à diminuição do número atômico), logo o elemento químico de maior raio é o ferro.

b) Cálculo da massa, em toneladas, de óxido de chumbo (II) formada:

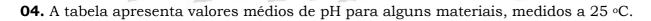
$$\begin{split} & 2 PbS(s) + 3O_2(g) \longrightarrow 2 PbO \ (s) + 2 SO_2(g) \\ & 2 \times 239 \ g \longrightarrow 2 \times 223 \ g \\ & \frac{80}{100} \times 2 \ t \longrightarrow m_{PbO} \\ & m_{PbO} = \frac{0,80 \times 2 \ t \times 2 \times 223 \ g}{2 \times 239 \ g} \end{split}$$

$$m_{PbO} = 1,492887 t$$

$$m_{\rm pho} \approx 1.5 \text{ t}$$

- **03.** Utilizado no tratamento da água, o gás cloro ($C\ell_2$) pode ser obtido pela eletrólise ígnea do cloreto de sódio ($NaC\ell$).
- **a)** Escreva o nome da mudança de estado que ocorre nesse processo, em que os cristais de cloreto de sódio são aquecidos até se tornarem líquidos.
- **b)** Calcule o volume, em litros, de gás cloro ($C\ell_2$), medido nas condições normais de temperatura e pressão (CNTP) e obtido na eletrólise ígnea após 2 minutos, com uma intensidade de corrente atravessando o material líquido de 9,65 A. Considere que 1 mol desse gás nas condições mencionadas ocupe um volume de 22,4 L e que 1 mol de elétrons equivale a 96500 C.

$$2C\ell^{-}(\ell) \longrightarrow C\ell_{2}(g) + 2e^{-}$$


Resolução:

- a) Nome da mudança de estado de agregação: fusão.
- b) Cálculo do volume, em litros, de gás cloro (Cl2):

Q = i×t
Q = 965 A×2×60 s = 965×2×60 C

$$2C\ell^{-}(\ell) \longrightarrow 1C\ell_{2}(g) + 2e^{-}$$

 $22,4 L \longrightarrow 2\times96500 C$
 $V_{C\ell_{2}} \longrightarrow 965\times2\times60 C$

$$V_{C\ell_2} = \frac{22,4 \text{ L} \times 965 \times 2 \times 60 \text{ C}}{2 \times 96500 \text{ C}}$$

 $V_{C\ell_2} = 13,44 \text{ L}$

Material	pН
suco gástrico	2,0
couro cabeludo	4,0
urina	6,0
lágrima	7,0
sangue	7,4

- a) Qual dos materiais apresenta maior concentração de íons hidróxido (OH-)? Justifique sua resposta.
- **b)** O suco gástrico é uma solução rica em ácido clorídrico, muco, enzimas e sais. Considerando a reação de ionização do ácido clorídrico, determine o pH de uma solução resultante da adição de 90 mL de água a 10 mL de solução aquosa desse ácido. Considere o pH do ácido igual ao do suco gástrico.

$$HC\ell(aq) \iff H^+(aq) + C\ell^-(aq)$$

Resolução:

a) Quanto maior o valor do pH, maior a concentração de íons OH-, ou seja, menor a acidez. O sangue possui o maior valor de pH (7,4), logo, apresenta a maior concentração de íons hidróxido (OH-).

b) Determinação do pH da solução:

$$\begin{split} pH_{suco\ g\acute{a}strico} &= 2,0 \\ pH = -log[H^+] \Rightarrow 2 = -log[H^+] \\ [H^+]_{inicial} &= 10^{-2}\ mol/L \\ V_{inicial} &= 10\ mL \\ [H^+]_{final} &= ? \\ V_{final} &= 10\ mL + \underbrace{90\ mL}_{\acute{a}gua} = 100\ mL \\ [H^+]_{inicial} \times V_{inicial} &= [H^+]_{final} \times V_{final} \\ 10^{-2}\ mol/L \times 10\ mL &= [H^+]_{final} \times 100\ mL \\ [H^+]_{final} &= \frac{10^{-2}\ mol/L \times 10\ mL}{100\ mL} \\ [H^+]_{final} &= 1,0 \times 10^{-3}\ mol/L \Rightarrow pH_{solução\ resultante} = -log[H^+]_{final} \Rightarrow pH_{solução\ resultante} = -log 10^{-3} \\ pH_{solução\ resultante} &= 3 \end{split}$$

05. O sal carbonato de cálcio é adicionado aos medicamentos usados no tratamento de doenças provocadas pela deficiência de cálcio, como a osteoporose. O carbonato de cálcio pode formar íons cálcio, obedecendo à reação:

$$CaCO_3(s) + 2H^+(aq) \rightleftharpoons Ca^{2+}(aq) + H_2O(\ell) + CO_2(g)$$

A reação de formação de íons cálcio foi realizada num experimento em determinadas condições de temperatura e pressão, medindo-se a massa desse íon formada a intervalos de tempos regulares. Empregando essas medidas, montou-se uma tabela.

Tempo (min)	0	2	4	6
Massa do Ca ²⁺ (mg)	2	3	5	8

- **a)** Determine, apresentando os cálculos, a velocidade média, em mg/min, de formação desse íon no intervalo de tempo entre 0 e 4 minutos. Observando a variação da quantidade de íons cálcio formada no início e no final do experimento, conclui-se que a velocidade de formação desse íon é crescente. Justifique essa observação.
- **b)** Explique como o aumento da temperatura e a adição de um catalisador podem afetar a velocidade dessa reação.

Resolução:

a) Sabemos que:

$$\begin{array}{lll} 1\text{CaCO}_{3}(s) + 2\text{H}^{+}(\text{aq}) & \longleftrightarrow & 1\text{Ca}^{2+}(\text{aq}) + 1\text{H}_{2}\text{O}(\ell) + 1\text{CO}_{2}(g) \\ & \frac{v_{\text{CaCO}_{3}}}{1} & = & \frac{v_{\text{H}^{+}}}{2} & = & \frac{v_{\text{Ca}^{2+}}}{1} & = & \frac{v_{\text{H}_{2}\text{O}}}{1} & = & \frac{v_{\text{CO}_{2}}}{1} = v_{\text{média}} \\ & v_{0 \to 4} = \frac{\left| 5 \text{ mg} - 2 \text{ mg} \right|}{4 \text{ min} - 0 \text{ min}} \\ & v_{0 \to 4} = 0.75 \text{ mg/min} \end{array}$$

$$v_{0\to 6} = \frac{|8 \text{ mg} - 2 \text{ mg}|}{6 \text{ min} - 0 \text{ min}}$$

$$v_{0\to 6} = 1,0 \text{ mg/min}$$

0,75 mg/min < 1,0 mg/min

Conclusão: a velocidade de formação de Ca²⁺ é crescente.

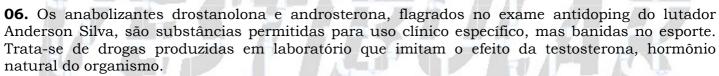
b) O aumento da temperatura provoca eleva o número de choques entre as espécies reagentes e, consequentemente, a velocidade da reação aumenta.

Observação teórica:

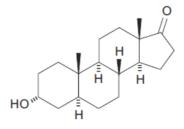
$$v = k[R]^x$$

$$k = A \times e^{\left(-\frac{E_{ativação}}{R \times T}\right)}$$

$$\mathbf{k} = \left(\frac{\mathbf{A}}{e^{\left(\frac{\mathbf{E}_{ativação}}{\mathbf{R} \times \mathbf{T}^{\uparrow}}\right)\downarrow}}\right) \mathbf{1}$$


A adição de um catalisador diminui a energia de ativação e, consequentemente, a velocidade da reação aumenta.

Observação teórica:


$$v = k[R]^x$$

$$1_{r} - \Delta \times e^{\left(-\frac{E_{ativação}}{R \times T}\right)}$$

$$\mathbf{k} = \left(\frac{\mathbf{A}}{\left(\frac{\mathbf{E}_{ativação} \downarrow}{\mathbf{R} \times \mathbf{T}}\right) \downarrow}\right) \uparrow$$

(www.veja.abril.com.br. Adaptado.)

androsterona

- a) Indique a fórmula molecular do androsterona e os nomes das classes funcionais presentes nessa estrutura.
- **b)** Quantos carbonos primários estão presentes na estrutura do androsterona? Justifique sua resposta.

Resolução:

a) Fórmula molecular do androsterona: $C_{19}H_{30}O_2$.

Classes funcionais presentes: cetona e álcool.

b) Número de carbonos primários (p) presentes na estrutura: <u>dois</u>, pois estão ligados a um único átomo de carbono.

07. Rica em vitaminas e minerais, como cálcio e ferro, e pobre em calorias, a couve está presente em dietas de restrições calóricas, como os sucos Detox, cujo objetivo é emagrecer.

(www.infoescola.com. Adaptado.)

- **a)** Indique o número de elétrons presentes na camada de valência do cálcio, considerando a distribuição dos elétrons nos níveis de energia, e escreva a equação balanceada representativa da reação entre uma base desse metal com o HNO₃.
- **b)** Determine o título percentual da couve em um suco Detox, considerando uma concentração de 15 g/L e densidade da água igual a 1 g/cm³. Apresente os cálculos.

Resolução:

a) Considerando a distribuição dos elétrons nos níveis de energia do cálcio, vem:

$$_{20}$$
 Ca: $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $\underbrace{4s^2}_{\substack{\text{Camada de walancia} \\ \text{valancia}}}$ $3d^{10}$

Dois elétrons na camada de valência.

$$\operatorname{Ca}^{2+}(\operatorname{OH})^{-}(\operatorname{OH})^{-} \Rightarrow \operatorname{Ca}(\operatorname{OH})_{2}$$

Equação representativa:

$$Ca(OH)_2 + 2HNO_3 \longrightarrow 2H_2O + CaC\ell_2$$

b) Considerando uma concentração de 15 g/L e densidade da água igual a 1 g/cm³, vem: C = 15 g/L

$$\begin{aligned} &d_{\acute{a}gua} = 1 \text{ g/cm}^3 = 1000 \text{ g/L} \\ &Em \text{ 1L:} \\ &1000 \text{ g-------} 100 \% \\ &15 \text{ g-------} \text{ p} \\ &p = \frac{15 \text{ g} \times 100 \%}{1000 \text{ g}} \end{aligned}$$

Outro modo:

p = 1,5 %

$$C = \tau \times d$$

 $15 \text{ g/L} = \tau \times 1000 \text{ g/L}$
 $\tau = 0.015 = 1.5 \%$

08. O ácido acético (CH₃COOH) é um líquido incolor de cheiro irritante, penetrante e com sabor azedo, sendo o principal constituinte do vinagre. O ácido acético é obtido por meio do etanol do vinho, que oxida com o oxigênio presente no ar.

(www.brasilescola.com. Adaptado.)

- **a)** Escreva a fórmula estrutural e indique quantos heteroátomos estão presentes no isômero de função do ácido acético.
- b) Equacione a reação de obtenção do ácido acético a partir da oxidação do etanol.

Resolução:

a) O isômero de função do ácido acético $(C_2H_4O_2)$ é o metanoato de metila $(C_2H_4O_2)$, que apresenta um heteroátomo (neste caso, um átomo de oxigênio ligado a dois átomos de carbono).

b) Reação de obtenção do ácido acético a partir da oxidação do etanol:

$$H_{3}C \longrightarrow H_{3}C \longrightarrow H_{3}C \longrightarrow H_{2}C \longrightarrow H_{2}C \longrightarrow H_{2}C \longrightarrow H_{3}C \longrightarrow H_{3}C \longrightarrow H_{2}C \longrightarrow H$$

09. Nas refinarias, são feitos processos físico-químicos para o refino do petróleo bruto, para a obtenção das frações do petróleo. O petróleo é composto por uma mistura complexa de hidrocarbonetos, além de pequenas quantidades de outras classes de compostos orgânicos que contêm nitrogênio, oxigênio e enxofre.

(www.brasilescola.com. Adaptado.)

- **a)** Identifique o nome do processo de separação dos constituintes do petróleo nas refinarias e escreva a fórmula molecular dos dois hidrocarbonetos de menor massa molar que podem ser extraídos nesse processo, sendo que um deles é conhecido como gás natural.
- **b)** Equacione a combustão completa de um alcano com oito átomos de carbono e indique o nome da ligação existente entre os átomos na molécula de água formada nessa combustão.

Resolução:

a) Nome do processo de separação dos constituintes do petróleo nas refinarias: destilação fracionada.

Fórmulas moleculares dos dois hidrocarbonetos (alcanos) de menor massa:

$$CH_4$$
 (16 g/mol; metano; "gás natural") C_2H_6 (30 g/mol; etano)

b) Equação da combustão completa do C_8H_{18} (C_nH_{2n+2} ; n=8):

$$C_8H_{18} + \frac{25}{2}O_2 \longrightarrow 8CO_2 + 9H_2O$$

ou
 $1C_8H_{18} + 25O_2 \longrightarrow 16CO_2 + 18H_2O$

Nome da ligação existente entre os átomos na molécula de água formada: covalente.

10. A cintilografia com citrato de gálio-67 é de fundamental importância na avaliação, estadiamento e tratamento terapêutico em pacientes com linfoma de Hodgkin, por apresentar resultados superiores à Tomografia Computadorizada. A medicina nuclear permite observar o estado fisiológico dos tecidos de forma não invasiva, com marcadores radioativos.

(www.alasbimnjournal.net. Adaptado.)

- **a)** Na cintilografia, a reação de decaimento do gálio-67 ocorre com a emissão de ondas eletromagnéticas gama, não se transformando em outro elemento. Escreva a equação da reação de decaimento do gálio-67.
- **b)** Partindo-se de 30 g de gálio-67 que possui meia-vida de 3 dias, qual a massa, em gramas, e a porcentagem encontrada dessa substância após 12 dias?

Resolução:

a) De acordo com o texto, na cintilografia, a reação de decaimento do gálio-67 ocorre com a emissão de ondas eletromagnéticas gama, não se transformando em outro elemento, então:

$$^{67}_{31}$$
Ga $\longrightarrow \gamma + ^{67}_{31}$ Ga

b) Cálculo da massa e da porcentagem:

12 dias = 4×3 dias, ou seja, 4 períodos de semide sintegração.

$$30 \text{ g} \xrightarrow{3 \text{ dias}} 15 \text{ g} \xrightarrow{3 \text{ dias}} 7.5 \text{ g} \xrightarrow{3 \text{ dias}} 3.75 \text{ g} \xrightarrow{3 \text{ dias}} 1.875 \text{ g}$$

$$100 \% \xrightarrow{3 \text{ dias}} 50 \% \xrightarrow{3 \text{ dias}} 25 \% \xrightarrow{3 \text{ dias}} 12.5 \% \xrightarrow{3 \text{ dias}} 6.25 \%$$

Conclusão:

$$m_{g{\acute{a}lio}-67}=1,875~g$$

$$p_{gálio-67} = 6,25 \%$$

Massa Atômica

() = n.° de massa do

isótopo mais estável

Série dos Actinídios

90

Th

Pa

89

Ac

1	CLASSIFICAÇÃO PERIÓDICA														18		
1 H 1,01	2											13	14	15	16	17	2 He 4,00
3 Li 6,94	4 Be 9,01											5 B 10,8	6 C 12,0	7 N 14,0	8 O 16,0	9 F 19,0	10 Ne 20,2
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	15 P 31,0	16 S 32,1	17 CI 35,5	18 Ar 39,9
19 K 39,1	20 Ca 40,1	21 Sc 45,0	22 Ti 47,9	23 V 50,9	24 Cr 52,0	25 Mn 54,9	26 Fe 55,8	27 Co 58,9	28 Ni 58,7	29 Cu 63,5	30 Zn 65,4	31 Ga 69,7	32 Ge 72,6	33 As 74,9	34 Se 79,0	35 Br 79,9	36 Kr 83,8
37 Rb 85,5	38 Sr 87,6	39 Y 88,9	40 Zr 91,	41 Nb 92,9	42 Mo 95,9	43 Tc (98)	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 127	54 Xe 131
55 Cs 133	56 Ba 137	57-71 Série do: Lantanídio		73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 r 192	78 Pt 195	79 Au 197	80 Hg 201	81 TI 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 Série do: Actinídio		105 Db (262	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (271)	111 Rg (272)							
Série dos Lantanídios																	
Número Atômico Símbolo			57 La 139	58 Ce 140	59 Pr 141	60 Nd 144	61 Pm (145)	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 163	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175

(IUPAC, 22.06.2007.)

No

(259)

103

(262)

Lr

Am

Cm

Bk

Cf

Es

Fm

Md

Np