Questāo 16

As retas $(a),(b)$ e (c) sāo lugares geométricos de três nointos, respectivamente, (A), (B) e (C), que pertencem a uma circunferència. Sabendo-se que nesta circunferè. :ia, o arco $A B$ mede 120° e o arco $B C$ mede 60°, pergunta-se qual o valor de seu raio.
a) 32 mm
b) 37 mm
c) 52 mm
d) 47 mm
e) 42 mm

QUESTÃO 16 - REPOSTA: A

Resolução:

Justificativa:

Devemos contruir um triảngulo equilátero BCO cujos artices pertencem às retas b, ced londe dée a bissetriz da faixa de paralelasłc). Assim,

$$
\begin{aligned}
& \left\{\begin{array}{l}
\operatorname{sen} \theta=\frac{q}{l} \\
\operatorname{sen}\left(60^{\circ}+\theta\right]=\frac{p+q}{q}
\end{array} \Rightarrow \operatorname{mon} 60^{\circ} \cdot \cos \theta+\operatorname{sen} \theta \cdot \cos \theta 0^{\circ}=\frac{p+q}{l} \Rightarrow\right. \\
& \left.\Rightarrow \frac{\sqrt{3}}{2} \cdot \sqrt{1-\frac{q^{2}}{Q^{2}}}+\frac{q}{l} \cdot \frac{1}{2}=\frac{\rho}{p+q} \frac{Q}{Q} \Rightarrow \sqrt{3} \cdot \sqrt{Q^{2}-q^{2}}+q=21 p+a\right) \Rightarrow \\
& \Rightarrow 3\left\{q^{2}-q^{2}\right]-[2 p+q)^{2} \Rightarrow 3 R^{2}=[2 p+q)^{2}+3 q^{2} \quad \theta \\
& \Rightarrow \quad\{\sqrt{3} \ell\}^{2}=\{2 D+a)^{2}+\left\lfloor\left. q \sqrt{3}\right|^{2} \quad\right. \text { [Teoremade Pitigoras] }
\end{aligned}
$$

OUESTÃO 17

Säo dadas duas retas (r) e it) e um ponto (P). Determinar o raị da circunferēncia que passa por (P), é tangente à reta (t), sendo a reta (r) o lugar geométrico do centro (0).
a) 32 mm
b) 19 mm
c) 41 mm
d) ${ }^{2} 25 \mathrm{~mm}$
e) 38 mm

Resolucka:

Justificativa:

1) $O \in \overleftrightarrow{\boldsymbol{r}}$. t o centro da circunferència " C "r procurada.
2) P^{*} simêtrico de P , pertence à circunferếncía " C ".
 com a reta $\stackrel{\leftrightarrow}{t}$, temos, pela potíncia do ponto M em relsçà à circunferéncia $C ; M^{2}=M P{ }^{\prime} . M P$.
3) Obtivemos MT pela construcio grafica da média proporcional $\overline{M T}$ em relação a $\overline{M P}$ e $\overline{M P}$
 da ciraunferincia C de raio $O T=25 \mathrm{~mm}$.

Obx: Existem duas soluç̉ెes, sendo que uma delas cai fora dos limites da folha.

OUESTAO 18.

 do vértice (A) é igual a 60° eque a altura conduzida deste mesmo vértice (A) mede 42 mm , pergunta-se o valor do perimetro do rixangulo.
a) 115 mm
b) 250 mm
c) 126 mm
d) 203 mm
e) 227 mm
${ }^{M b_{x}}$
$x^{M c}$
Fig. 4

QUESTAO 18 - RESPOSTA: E

Resoluyion:

Operfmetro do $\triangle A B C$ obticoo na soluçảo gráfica apresentada ê: $P=99 \mathrm{~mm}+42 \mathrm{~mm}+86 \mathrm{~mm}=227 \mathrm{~mm}$

Justificativa:

1) O vértice A, pertence ao arco capaz de 60°, construldo sobre o segmento $\overrightarrow{\mathrm{M}_{\mathrm{b}} \mathrm{Mc}}$.
2) O vertice A, pertence ao par de paralelas à reta ${\stackrel{M}{M} M_{C}}^{M_{C}}$, construidas a uma distãncia $\frac{42 \mathrm{~mm}}{2}=21 \mathrm{~mm}$ da

3) C e"B são simétricos de A em rela̧̧āo a M_{b} e M_{C} respectivamente.

QUESTAO 19

São dados do problema:
a. O ponto ($\mathrm{P}^{\prime \prime}$) pertence a uma elípse;
b. Oponso [F] в; simultaneamente, foco desta elipse a de uma paribola;
c. A reta (s) é suporte da eixo da elipse e do eixo da pardbola;
d. Opento (F^{\prime}) 4 o outro foco da elfpse:
e. Oponto (A) \& o vértice da parabola.

Pedo-se o menor angulo formado pela tangente a parabola, passando pelo ponto tpl, a a taņente à elípse, passando pelo ponto [P').
al. 50°
b) 58°
c) 27°
d) 48°
e] 13°.

QUESTAO 19-RESPOSTA C

Rosoluçía:
Na soluçăo gráfica apresentada o menor Angulo entre a tangente a elipse $\left\{\mathrm{t}_{3}\right)$ e a tangente a paribola $\left(\mathrm{t}_{\mathrm{f}}\right)$ tem por medida 27°.

Justificativa:

1) $\mathrm{FP}^{+}+\mathrm{P}^{\prime} \mathrm{F}^{\prime}=\overrightarrow{\mathrm{FF}} \vec{F}^{\prime}=2$ a (aixo maior da elipse).
2) ${ }_{4}^{4 \rightarrow}$, bissetriz do ängulo $F^{\prime} \hat{P} \bar{F}$ ', é a tangente à elipse no ponto P (é únical.
3) d et a diretriz da parábola.

4) Os simetricos de F, em relação à tangente $\left(\bar{F}_{1}\right.$ e $\left.\vec{F}_{2}\right)$ sáo pontos da diretriz \vec{d}. Sendo P o ponto da tangente a pardbola, temes; $P F=P \bar{F}_{1}=P \bar{F}_{2}$.
5) As mediatrizes de $\vec{F} \vec{F}_{1}$ e $\overrightarrow{F \vec{F}_{2}}$, respectavamente, t_{1} e t_{2}, sto as tangentes a pardbola em P.

6] As rangentes t_{2} e t_{3} formam angulo de 40°, e as tangentes t_{1} e t_{j} formam singulo de 27°, sendo este 0 menar dos ängulos.
(tangente à parábola)

A um ajustador mecinico ef fornecida uma chapa de aço, retangular. Pedese o apotemh do maior pentigono que pode ser riscado nesta chapa, sabendose que as dimens6es desta sfo, fespectivamenta, a $3^{\text {a }}$ proporcional a Madia Proporcional dos valores 150 mm e 125 mm .
A resposta deverá ser indicada na escaia de $1: 2,5$:
a) 35 mm
a) 14 mm
b) 43 mm
c) 25 mm
d) 17 mm

QUESTÄO 20-RESPOSTAC

Rasoluçĩ:

$O P=25 \mathrm{~mm}$ é a medida obtida para o apotema do pentagono na solução graffica apresentada.

1) Na , fig. 1. obtivemos graficamente à media proporcional $A F$, tal que $A F^{2}=A B, A C$, onde $A B=50 \mathrm{~mm}$ $A C=60 \mathrm{~mm}$, representam os segmentos de 125 mm e 150 mm na escale $1: 2,5$, de acordo com o enunciado:
Escala: $\quad \frac{1}{2,5}=\frac{A B}{125}=\frac{A C}{150} \Rightarrow\left\{\begin{array}{l}A B=50 \mathrm{~mm} \\ A C=60 \mathrm{~mm}\end{array}\right.$
2) Na mesma fig. 1 , aplicando 0 teorema de Talas, obtivemos a 3 a proporcional $A E$, tal que $\frac{50 \mathrm{~mm}}{60 \mathrm{~mm}}=\frac{60 \mathrm{~mm}}{\mathrm{AE}}$.
3) Na fig. 2, construimos a circunferència madxima de cehtro O na chapa de dimensöes $A F$ e $A E$ (conforme enuncíadol. Nessa circunferencia inscrevemos o pentágono regular de lado RO. Com centro de homotetia direta em M, obtivemos LS, lado do pentigono maximo, construido na chapa de aco.
4). As mediatrizes de LS e SV. determinam o ponţo O, centro do pentágono, de onde determinamos o apotema $O P=25 \mathrm{~mm}$.

$+\quad$ med. prop.

चरi) 17 A - instituto tecnoloaico

de aEnonAutica

01 As retas (a), (b) e (c) são lugares geométricos de três pontos, respectivamente, (A), (B) e (C), que pertencem a uma circunferência. Sabendo-se que nesta circunferência, o arco $A B$ mede $120^{\circ} e$ o arco $B C$ mede 60°, pergunta-se qual o valor de seu raio.
(A) 32 mm
(B) 37 mm
(C) 52 mm
(D) 47 mm
(E) 42 mm
(c)
(b)
(a)
02. Sāo dadas duas retas (r) e (t) e um ponto (P). Determinar o raio da circunferēncia que passa por (P), é tangente à reta (t), sendo a reta (r) o lugar geométrico do centro (0).
(A) 32 mm
(B) 19 mm
(C) 41 mm
(b6) 25 mm
(E) 38 mm

03. Mb e Mc såo,reapectivamente, os pontos medios dos lados (b) - (c) de un Erialngulo ABC. Sabendo--se que o ângùio do vértice (A) $\delta 1$ gual a 60° a que a altura conduzida deste memo vértice (A) mede 42 mm , pergunta-se o valor do perimetro do triAngulo.
(A) 115 mm
(B) 250 mm
(C) 126 mm
(D) 203 mm
(E) 227 mm
$\mathrm{Mb}_{\mathrm{X}} \quad \mathrm{Mc}_{\mathrm{X}}$
04. São dados do problema:
a) O ponto (P^{\prime}) pertence a uma elipse;
b) o ponto (F) é, simultaneamente, foco desta elipse e de uma parábola;
c) A reta (s) é suporte do eixo da elipse e do eixo da parábola;
d) 0 ponto (F^{\prime}) è o outro foco da elipse;
e) o ponto (A) é o vértice da parábola.

Pede-se o menor ângulo formado pela tangente à parábola, passando pelo ponto (P), e a tangente à elipse, passando pelo ponto (P^{\prime}).
(A) 50°
(B) 58°
(IC) 27°
(D) 48°
(E) 13°

${ }^{P}{ }_{x}$

$$
P^{\prime} x
$$

5. A um ajustador mecânico é fornecida uma chapa de ago, retangular. pede-se o apotema do malor pentágono que pode ser riscado nesta chapa, sabendo-se que as dimenso̊es desta sîo, respectivamente, a 30 proporcional e a Média proporcional dos valores 150 mm e 125 mm . A resposta deverf eer indicada na escala de $1,2,5$.
(A) 35 mm
(B) 43 mm
(C) 25 mm
(D) 27 mm
(E) 14 mm
