ALGEBRA FI. 1 / 10

1a. QUESTÃO TEM UNICO VALOR: 0,5

ENUNCIADO:

Determine as soluções da equação

$$36x^3 - 12x^2 - 5x + 1 = 0,$$

dado que uma de suas raízes é a soma das outras duas.

SOLUÇÃO

Sejam α, β e γ as raízes da equação dada

sabe-se que
$$\begin{cases} \alpha + \beta + \gamma = \frac{12}{36} = \frac{1}{3} \\ \alpha\beta + \alpha\gamma + \beta\gamma = -\frac{5}{36} \\ \alpha\beta\gamma = -\frac{1}{36} \end{cases}$$

Como, por hipótese, $\alpha + \beta = \gamma$, tem-se

$$2 \gamma = \frac{1}{3} \Longrightarrow \gamma = \frac{1}{6}$$

Logo dividindo-se o polimônio dado por $x = \frac{1}{6}$ tem-se:

$$36x^3 - 12x^2 - 5x + 1 = (36x^2 - 6x - 6)(x - \frac{1}{6})$$
. Logo

as raízes α e β serão as raízes da equação de 29 grau

$$36x^2 - 6x - 6$$
 que são $\alpha = \frac{1}{2}$ e $\beta = -\frac{1}{3}$.

Resp.:
$$-\frac{1}{6}, \frac{1}{2}, -\frac{1}{3}$$

2a. QUESTÃO:

ITEM UNICO

VALOR: 0,5

ENUNCIADO:

Seja um polinômio

$$p(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

com coeficientes reais. Sabe-se que p(0) = 0, p(2) = 4, que a reta tangente a p(x) no ponto (1,1) é paralela à reta y=2x+2 e que a reta tangente a p(x) no ponto (2,4) é perpendicular à reta $y=-\frac{1}{3}$ x -4. Determine os coeficientes a_3 , a_2 , a_1 , a_0 .

SOLUÇÃO

$$p(0) = 0 \implies a_0 = 0$$
 : $p(2) = 4 \implies 4a_3 + 2a_2 + a_1 = 2$ (1)

continua

IME - CEE 77/ 78	ALGEBRA	FI. 2 / 1
$p'(1) = 2 = 3a_3 + 2a_2$	$+ a_1 = 2$	(2)
$p(1) = 1 \Longrightarrow a_3 + a_2 +$	ā1 = 1	(3)
$p(2) = 4 \Longrightarrow \text{equação } 1$		
$p'(2) = 3 \implies 12a_3 + 4$	$a_2 + a_1 = 3$	(4)
pe (1) - (2), $a_3 = 0$		(5)
De (4) - (3) , $3a_2 = 2$	$\Rightarrow a_2 = \frac{2}{3}$	(6)
De $(2) - (3)$, $a_2 = 1$		(7)
De (6) e (7), o sistema satisfazendo às condiçõe	ē incompatīvel, não exis	ste um polinômio

3a. QUESTÃO:

ITEM UNICO

VALOR: 1,0

ENUNCIADO:

Mostre que, em toda reunião constituída de seis pessoas, das hipoteses necessariamente ocorre (podendo ocorrer ambas):

- a) existem três pessoas que se conhecem mutuamente (isto é, três cada duas se conhecem);
- b) existem três pessoas que se desconhecem mutuamente (isto é, das três cada duas se desconhecem).

SOLUÇÃO

Seja v uma qualquer das pessoas, v estará, necessáriamente, liga da a, no mínimo, 3 pessoas, por conhecimento ou por desconhecimento. (v conhece todas; v conhece 4 e desconhece 1; ...; v desconhece todas). Sem perda de generalidade, suponhamos que v conheça tres pessoas. n₁, n₂, n₃. Se quaisquer duas pessoas entre n₁, n₂, n₃ se conhecem, então estas duas, com v, formam o grupo de 3 pessoas que se conhecem. Se n_1 , n_2 , n_3 se desconhecem duas elas formam o grupo das 3 pessoas que se desconhecem mutuamente.

4a. QUESTÃO

ITEM UNICO

VALOR: 0,5

ENUNCIADO:

Seja h uma função continua, real de variável real. Sabe-se que h(-1) = 4; h(0) = 0; h(1) = 8. Defino uma função g como g(x) = 1h(x) - 2. Prove que a equação g(x) = 0 admite, pelo menos, soluções distintas.

SOLUÇÃO

continua ...

IME - CEE 77/ 78

ALGEBRA

FI. __3_/10

como g(x) = h(x)-2, sabe-se que g é continua, por \underline{h} e continua por hipótese.

Tem-se g(-1) = h(-1)-2 = 4-2 = 2

g(0) = h(0)-2 = 0-2 = -2

g(1) = h(1)-2 = 8-2 = 6

Logo, pelo teorema do valor intermediáric , existe um número real $\underline{\alpha}$ entre -1 e 0 tal que $g(\alpha)=0$ e existe um número real $\underline{\beta}$ entre 0 e 1 tal que $g(\beta)=0$.

5a. QUESTÃO:

ITEM UNICO

VALOR: 1,0

ENUNCIADO:

Seja o conjunto $A = \{ z \in c \mid |z| = 1 \}$

Determine a imagem de A pela função g, complexa de variável complexa, tal que g(z) = (4 + 3i)z + 5 - i.

Notação: ¢ é o conjunto dos números complexos | z | é o valor absoluto de z.

SOLUÇÃO

Sabe-se que o conjunto A representa o circulo unitário de R^2 de centro na origem $x^2 + y^2 = 1$.

A aplicação g: ¢ — ¢ z — (4+3i)z + 5 -i

Indica uma rotação de ângulo 0 igual ao argumento de 4+3i seguida de uma trajetória de razão $\lambda = 4 + 3i = \sqrt{25} = 5$, seguida de uma translação de razão 5-i.

Como o círculo fica invariante por rotação, f(A) será um novo circulo de raio 5 seja maior(logo raio igual -5) e centro no ponto (5, -1), ou seja, f(A) será o círculo.

$$(x-5)^2 + (y+1)^2 = 25$$
 ou ainda

$$f(A) = \{z \in c, |z-5+i| = 5\}$$
.

IME - CEE 77 / 78	ALGEBRA	FI. 4 / 10
6a. QUESTÃO:	ITEM UNICO	VALOR: 1,0
ENUNCIADO:	,	
Para t> 0 e x >	l, defino a função f _t ,	real de variável real
como:		1
	$f_t(x) = x \left[\frac{x^t - (t)}{t} \right]$	+ 1)
Supondo-se que o limi	te indicado exista, des	fine-se
	$f(x) = \lim_{x \to 0} f_t(x)$, x> 1
Determine f(e ²), onde	e é a base dos logari	itmos neperianos.
	SOLUÇÃO	r &
$f(x) = \lim_{t \to 0} x \left[\frac{x^t - t}{t} \right]$	(t + 1)	
Se $x = 0$, $f(x) = 0$		
Se $x \neq 0$, $h(x) = \frac{f(x)}{x}$	$= \lim_{t \to 0} \left[\frac{x^{t} - (t + t)^{t}}{t} \right]$	1)
Aplicando a regra de :	'Hoppital,	# 1 ⁸
$h(x) = \frac{\lim_{x \to 0} \left[x^{t} \right] \ln x}{\lim_{x \to 0} 1}$	<u>x - 1]</u>	7
t + 0		ŭ
$h(x) = \ln x - 1$		
f(x) = x (lnx - 1)		
$f(e^2) = e^2 (\ln e^2 - 1)$	$= e^2$	

7a. QUESTÃO:

ITEM UNICO

VALOR: 1,0

ENUNCIADO:

Sejam A, B, C, D matrizes reais 2×2 .

$$A = (a_{ij})$$

$$A = (a_{ij})$$
 ; $A^{-1} = B = (b_{ij})$

$$C = (c_{ij})^{-}$$

$$c = (c_{ij})$$
 ; $c_{ij} = a_{ij}^{-1}$

$$D = (d_{ij})$$

$$D = (d_{ij})$$
 ; $d_{ij} = b_{ij}^{-1}$

Sabe-se que $a_{ij} b_{ij} \neq 0$, $1 \leq i \leq 2$; $1 \leq j \leq 2$, e que C é matriz singular (não admite inversa). Calcule o determinante de D.

pet C = 0, porque C é singular

$$c = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} \frac{1}{a_{11}} & \frac{1}{a_{12}} \\ \frac{1}{a_{21}} & \frac{1}{a_{22}} \end{bmatrix}$$

Det
$$C = \frac{1}{a_{11} a_{22}} - \frac{1}{a_{21} a_{12}} = 0$$

$$\frac{1}{a_{11}} = \frac{1}{a_{21}} = \frac{1}{a_{21}}$$

$$a_{11} a_{22} = a_{21} a_{12}$$

Mas Det $A = a_{11} a_{22} - a_{21} a_{22}$ não pode ser igual a zero, porque A, por hipótese, é não singular.

Hā inconsistência nos dados, o problema não tem solução.

8a. QUESTÃO:

ITEM UNICO

VALOR 0,5

ENUNCIADO:

Seja m uma função real de variável real definida como: m(x) = |7 - x|

Diz-se que uma função u, real de variável real, é contínua no ponto a de seu conjunto de definição se, para todo número real $\epsilon > 0$, existe um número $\delta > 0$ tal que, se y é ponto do conjunto de definição de u e se $|y-a|<\delta$, então $|u(y)-u(a)|<\epsilon$. Quer-se testar a continuidade de m no ponto x=-2. Escolhe-se um $\epsilon = 0,01$. Determine um δ conveniente, para este valor de ϵ . Justifique sua resposta.

Notação: |h| é o valor absoluto de h.

SOLUÇÃO

$$m(y) = |7 - y|; m(-2) = 9$$

 $|m(y) - m(-2)| = ||7 - y| - 9|$ (1)

Se
$$7 - y > 0$$
, $|m(y) - m(-2)| = |(7-y)-9|$ (2)

$$7 - y < 0, |m(y) - m(-2)| = |y - 7 - 9|$$
 (3)

continua

IME - CEE_77.78_	ALGEBRA	FI6	/ 10
De (2), -2 - y	= m(y) - m(-2)	on Francis and Security	(4)
De (3), y -16	= m(y) - m(-2)		(5)
Ora, dado $\varepsilon = 0$,	01, escolhe 0 < $\delta \leqslant$ 0,01. Assim, se		
у -	$(-2) \mid < 0.01, \mid -y -2 \mid < 0.01$	2. *	(6)
Mas - y - 2 <0,0	01 (y está 0,01 próximo de -2). Assim,		
7 - y > 0, e valer De (4) e (6)	n (2) e (4).		· .
m(y) - m(-2) =	-2 - y < 0.01.		
Isto mostra que,	$f_{y} \in \mathbb{R}$, se $ y - (-2) < 0.01$, então		(#12)
	0,01 e, para ε = 0,01 f⊙i possível achar verificar a condição de continuidade de		
	Resposta: 0 0,01		

9a. QUESTÃO:

ITEM UNICO

VALOR: 1,0

ENUNCIADO:

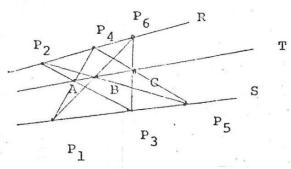
Sejam R e S duas retas quaisquer. Sejam $P_2 = (x_2, y_2)$, $P_4 = (x_4, y_4)$, $P_6 = (x_6, y_6)$ três pontos distintos sobre R e $P_1 = (x_1, y_1)$, $P_3 = (x_3, y_3)$, $P_5 = (x_5, y_5)$ três pontos distintos sobre S. O segmento P_2P_3 não é paralelo ao segmento P_1P_4 , o segmento P_1P_6 não é paralelo ao segmento P_2P_5 e o segmento P_3P_6 não é paralelo ao segmento P_4P_5 Sejam:

A, a interseção dos segmentos P₂P₃ e P₁P₄,

B, interseção de P₁P₆ com P₂P₅ e

C, interseção de $P_2^P_6$ com $P_4^P_5$. Prove que os pontos A, B e C estão em linha reta.

SOLUÇÃO



Dadas as coordenadas dos pontos P₁ (=1, ..6) determina-se as equações das retas:

ME - CEE 77 / 78	ALGEBRA	FI. 7 / 1
P ₁ P ₆ , P ₁ P ₄ , P ₂ P ₃ , P ₂ P ₅ , P ₃ P ₆ ; ções dos três sistemas	P ₄ P ₅ e a seguir determina-se	as solu-
$\begin{cases} A = P_1 P_4 \cap P_2 \\ B = P_1 P_6 \cap P_2 \\ C = P_3 P_6 \cap P_4 \end{cases}$ e verifica-se que esses pont		

10a. QUESTÃO:

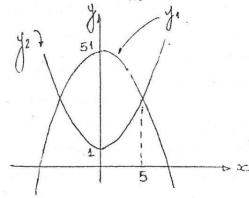
ITEM UNICO

VALOR: 1,0

ENUNCIADO:

Dadas as parābolas y_1 e y_2 , $y_1(x) = 51 - x^2$ e $y_2(x) = x^2 + 1$, sabe-se que a ārea entre y_1 e y_2 , medida entre x = 0 e x = 5 é igual a 3 vezes a ārea entre y_1 e y_2 , medida entre x = 5 e x = a.

Determine a.



SOLUÇÃO

$$y_1 = 51 - x^2$$
 $y_2 = x^2 + 1$
 $51-x^2 = x^2 + 1$
 $2x^2 = 50$
 $x^2 = 25$
 $x = 15$

a) AREA ENTRE Y_1 e y_2 entre x = 0 e x = 5

$$S_{1} = \int_{0}^{5} (y_{1} - y_{2}) dx = \int_{0}^{5} (51 - x^{2} - (x^{2} + 1)) dx = \int_{0}^{5} (50 - 2x^{2}) dx$$

b) AREA ENTRE y_1 e y_2 entre x=5 e x=a

$$S_2 = \int_5^a (y_2 - y_1) dx = \int_5^a (x^2 + 1 - (51 - x^2)) dx = \int_5^a (2x^2 - 50) dx$$

Sabemos que $S_1 = 3S_2$

$$\int_{0}^{5} (50-2x^{2}) dx = 3 \int_{5}^{a} (2x^{2} - 50) dx$$

continuação ..

$$\begin{bmatrix} 50x - \frac{2}{3} & x^3 \end{bmatrix}_0^5 = 3 \begin{bmatrix} \frac{2}{3} & x^3 - 50s \end{bmatrix}_5^a$$

$$250 - \frac{250}{3} = 3 \begin{bmatrix} \frac{2}{3} & a^3 - 50a - (\frac{250}{3} - 250) \end{bmatrix}.$$

$$\frac{500}{3} = 2 \begin{bmatrix} \frac{2a^3 - 150 & a - 250 + 750}{2} \end{bmatrix} = 2a^3 - 150a + 500$$

$$500 = 6a^3 - 450a + 1500$$

$$6a^3 - 450a + 1000 = 0 \text{ ou } 3a^3 - 225a + 500 = 0$$

Trata-se portanto de achar o valor de a, soluções de uma eq. do 39 grau.

Pelo enunciado do problema, a >5.

Seja $f(a) = 3a^3 - 225a + 500$ como f(7 < 0 e f(8) > 0, a solução está entre 7 e 8.

lla. QUESTÃO:

ITEM UNICO

VALOR: 1,0

ENUNCIADO:

Se x(t) é o número de parasitas existentes, no tempo t, em uma população hospedeira y(t), a relação entre as duas populações pode ser descrita por y^A e y^B = y^B

onde A, B, R e S são constantes apropriadas. Pede-se determinar $\frac{\mathrm{d} y}{\mathrm{d} x}$.

SOLUÇÃO

$$x(t)$$
 $y(t)$, A, B, R e S = constantes.

$$y^{A} e^{B} y = \kappa x^{R} e^{Sx}$$
 (1)

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{dy/dt}{dx/dt}$$

Derivando ambos os membros de (1) em relação a t:

$$Y^{A} e^{B} Y B \frac{Jy}{dt} + e^{B} Y A Y^{A-1} \frac{dy}{dt} = Kx^{R} e^{Sx} S \frac{dx}{dt} + Ke^{Sx} R_{x} \frac{R-1}{dt}$$

$$\frac{dy}{dt} \left[e^{By} y^{A-1} (By + A) \right] = \frac{dx}{dt} \left[K e^{Sx} x^{R-1} (Sx + R) \right]$$

$$\frac{dy}{dt} / dx/dt = \frac{k e^{Sx} x^{R-1} (Sx + R)}{e^{By} y^{A-1} (By + A)}$$

(multiplicando o numerador e o denominador por xy).

IE - CEE 77/ 78	ALGEBRA	Fl9 /10
	$\frac{(Sx + R)}{(By + A)} = \frac{y}{x} \times \frac{Sx + R}{By + A}$	
12a. QUESTÃO:	ITEM UNICO	VALOR: 1,0
	$n \in N^*$ de números racionais, $m, n \in N^*$. Dada uma seque	
$t = (t_n)_{n \in N}^*$, defino	k _t = menor inteiro maior o	que $ t_1 + 2$.
	regulares e K = maximo {k, como $z_n = x_{2kn} \cdot y_{2kn}$.	*
que $(z_n)_{n \in \mathbb{N}^*}$ é uma seq NOTAÇÃO: \mathbb{N}^* é o conjunt	dência regular. o dos naturais sem o número	o zero, isto é,
$N^* = \{1,2,3$	SOLUÇÃO	
Sabe-se que $(Z_m - Z_n) =$	$(x_{2km} \cdot y_{2km} - x_{2kn} \cdot y_{2kn}) = x$	2km (y2km-y2km) +
$y_{2kn} (x_{2km} - x_{2kn})$.		
Logo: $ z_m - z_n \le x_{2km} $	Y _{2km} - Y _{2km} + Y _{2km} x ₂₁	$km - x_{2kn}$ (1)
Mas, por ser regular, t $ x_1 - x_r \leqslant \frac{1}{1} + -$	$\frac{1}{r} \leqslant 2$	
	$ x_r - x_1 \le x_1 - x_r \le 2$	W V
Logo $ x_r \le x_1 + 2$	« k _x ,	. (2)
νε ν* De modo análogo y _r <	$ y_1 + 2 \le k_y$, $\forall r \in N^*$	(3)

De $\underline{2}$ e $\underline{3}$, $ \mathbf{x}_{2km} < \mathbf{k}_{\mathbf{x}} \leqslant \mathbf{k}$ $ \mathbf{y}_{2kn} < \mathbf{k}_{\mathbf{y}} \leqslant \mathbf{k}$ Por serem $\underline{\mathbf{x}}$ e $\underline{\mathbf{y}}$ regulares, têm-se que $ \mathbf{x}_{2km} - \mathbf{x}_{2kn} \leqslant \frac{1}{2km} + \frac{1}{2kn}$	(4) (5)
Por serem <u>x</u> e <u>y</u> regulares, têm-se que	(5)
$ \mathbf{x}_{2km} - \mathbf{x}_{2kn} \leqslant \frac{1}{2km} + \frac{1}{2kn}$	
	(6)
$ \dot{y}_{2km} - y_{2km} \le \frac{1}{2km} + \frac{1}{2km}$	(7)
Substituindo-se 4, 5, 6 e 7 em 1 , tem-se:	
$ zm - zn \le k \left(\frac{1}{2km} + \frac{1}{2km}\right) + k \left(\frac{1}{2km} + \frac{1}{2km}\right)$) =
_1 + 1	*
Consequentemente, z é regular.	