Prova de Física

IME-CEA/19	71 Fis	SICA	INSCRIÇÃO NO	Fls. 1
l a QUESTÀ	(O (0,5pontos):	AB tem um	O: Na figura abaix pêso próprio de 5	kgf/m.
			0 kgf o pêso que	
			assando por uma po	
atrito,	para que a barra	permaneça na	horizontal, é nec	
se apliq	ue, a 0,50m de A	, wma fôrça F	de:	
A)	20 kgf	()	4	
В)	10 kgf	()	F	(1)
C)	15 kgf	()	k-05_	
D)	Nula (o pêso própi	io	M 0,5-1	В
	da barra e o pêso	P	A 2,0 m	
	se equilibram).	()	ŽI .	
	25 kgf	()		4
E)	-5			

IME-CEA/197	T FÍSICA	******	INSCRIÇÃO NO	Fls2
2 ª QUESTÃO	(0,5 pontos):-	AB é articu	Na figura abaixo	suspensa
	pêso. Sendo de l B e o ângulo for	100 kgf por met		o da barra,
	200 kgf; 0 ⁰ ()	C	
C)	100 V3 kgf; 60°()		
D)	100 √3 kgf; 30°()	30	<u>~</u> ^
E)	200 kgf; 30° ()	B 2,0 m —	7
F)	N. R. A. ()	% I'	•

IME-CEA/19 71 FÍSICA INSCRIÇÃO Nº Fls. 3

3ª QUESTÃO (0,5 pontos):

ENUNCIADO: No plano inclinado da figura, os corpos A e B, cujos pêsos são de 200 kgf e 400 kgf, respectivamente, estão ligados por um fio que passa por uma polia lisa. O coeficiente de atrito entre os corpos e os planos é 0,25. Para que o movimento se torne iminente, deve ser aplicada, ao corpo A, uma fôrça P de:

A) 25 √2 kgf ()

B) 25 √3 kgf ()

C) 50 √3 kgf ()

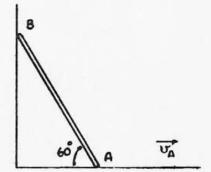
SOLUÇÃO:

D) 50 kgf ()

E) $50\sqrt{2}$ kgf ()

F) N.R.A.

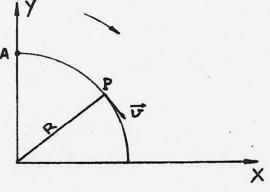
IME-CEA/19 <u>71</u>	FÍSICA		NSCRIÇÃO 1	16	Fls. 4
4 ª QUESTÃO (0,		ENUNCIADO: U			
	instante em	Orsegundos para que se iniciou		A A	
A) 4.0	000m ()	D) 500m	()		
B) 6	500m ()	E) 400m	()		
C) 6.0	000m ()	F) N.R.A.	()		
Use g=10 m	$\sqrt{s^2}$.				


IME-CEA/19 71	FÍSICA	INSCRIÇÃO NO	Fls5

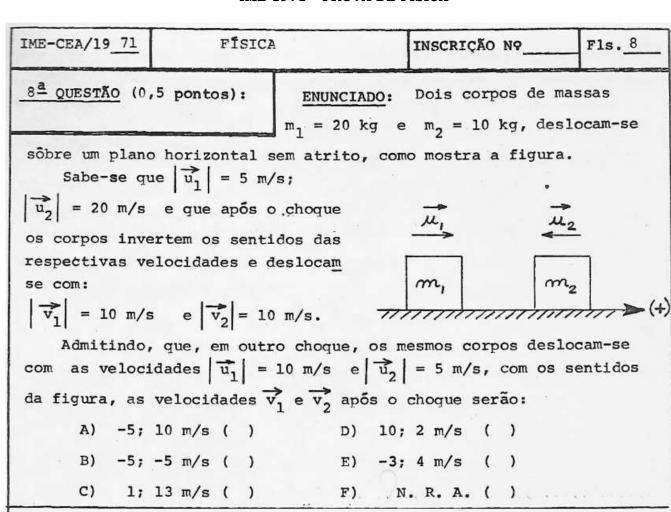
5ª QUESTÃO (0,5pontos):

ENUNCIADO: Na figura abaixo, a barra AB se move de modo que sua extremidade infe-

rior se desloca horizontalmente para a direita, com velocidade constante $v_A = 3$ m/s. A outra extremidade se desloca sempre apoiada no plano vertical. Quando a barra estiver formando um ângulo de 60° com a horizontal, a velocidade da extremidade superior será de:


- A) -3 m/s ()
- B) $-3 \sqrt{3} \text{ m/s}$ ()
- C) $-\sqrt{3} \text{ m/s}$ ()
- D) -2 m/s ()
- E) $-2\sqrt{3}$ m/s ()
- F) N.R.A. ()

IME-CEA/19_71	FĪS	SICA	INSCRIÇÃO NO	Fls. 6
6 a QUESTÃO (0,5 po	ntos):	HOR AND	Um ponto P tem u ajetória circular,	
sentido igual ao	dos ponte	eiros do relóg	io. O arco descrit	tem


sentido igual ao dos ponteiros do relógio. O arco descrito tem para equação S = 3t² + 1,85 t, sendo S dado em metros, para valo res de t em segundos. Sendo de 10 m o raio da trajetória, no instante em que t = 2s, a componente da velocidade segundo o eixo coordenado XX' será:

- A) + 1,385 m/s ()
- B) Nula ()
- C) + 13,85 m/s ()
- D) + 1,57 m/s ()
- E) + 15,7 m/s ()
- F) N.R.A. ()

Origem do movimento - A

IME-CEA/19 <u>71</u>	FÍSICA	A	INSCRI	ção no	Fls. 7
7 ª QUESTÃO (0	,5 pontos):	2 kg, deslo	a-se, co	co A, cuja mo	figura,
choca-se com a	a mola C.	sobre um pla	no horiz	contal sem a	trito e
comprimindo-a		3.	2		K
	e que a consta		>		E.
te elástica da 0,18 N/m, a vei	a mola, é		n	man-	
lar do bloco,	no momento	em /////	m	777777777777777777777777777777777777777	-)[
que se chocou	com a mola er	a:		-20 cm-s	
A) (5 cm/s ()	D) 60 d	m/s ()		
B) 20	0 cm/s ()	E) 10 d	m/s ()		
C) 50) cm/s ()	F) N.I	.A. ()		
SOLUÇÃO:				•.	

IME-CEA/19_71	FÍSIC	Α	INSCRIÇÃO NO	Fls. 9
9 ª QUESTÃO (0	,5 pontos):			rico de massa espaço sideral,
		o 10 ⁷ m em tôrno		rpo também es-
férico, cuja	massa é m ₂ =	$\frac{\Upsilon^2}{6,67} \times 10^{22} \text{ kg}$		1
A consta	nte de gravit	ação é G=6,67 x	10 ⁻¹¹ N.m ² /	kg ² .
O period	o de revolução	o é:		
A)	200.000 s () D)	360.000 s ()
В)	100.000 s () E)	5.400 s ()
C)	300.000 s () F)	N. R. A. ()
				

IME-CEA/19_71	FÍSICA	A	INSCRIÇÃO NO	Fls. 10
10ª QUESTÃO (0	,5 pontos):	gigante, tem	Um observador, em velocidade escalar	, constan
	ocidade do sor	ância da roda, n, a diferença	Uma fonte sonora no plano desta. Se entre as frequênci	ndo de
A) :	10 Hz ()	D)	70 Hz ()	
в) :	30 Hz ()	E)	90 Hz ()	
c) 5	50 Hz ()	F)	N. R. A. ()	
201.00%				

IME-CEA/19_71	FÍSICA			INSCRIÇÃO N9	Fls. 11
11ª QUESTÃO (O	,5 pontos):		pend	Uma corda de 2 m urada de um vibrad	or de pe-
corda, ondas	transversais	a 100 Hz,	monta	ude, que pode oper ado de modo a prod	
	e propagam co ondas estacio			e 80 m/s.	
	60; 70; 80; 9		()		
	60; 80; 100 н 70; 90 нz	Z	()		
	80 Hz		()		
	Nenhuma freque	encia	()		

IME-CEA/19 <u>71</u>	FÍSIC	A	INSCRIÇÃO	NO	Fls. 12
12ª QUESTÃO (0,	5 pontos):	ENUNCIADO: da a uma tem	peratura de	327°C,	transfere
	lho máximo,	1000 caloria			
	nsiderada é: 600 kcal () D)	427 kcal ()	
в)	1,5 kcal () E)	0,5 kcal () .	
c)	3,0 kcal () F)	N.R.A. ()	

IME-CEA/1971	FÎSI	CA	INSCRIÇ!	O NO	Fls. 13
13ª QUESTÃO (0	,5 pontos):	até uma a	o: Um reser ltura de 30	cm. Abriu	ı-se um
do fundo. O tório em 45 m	volume de água minutos, de mo	a, em litros	de 1 cm ² de , a ser int durante to	roduzido n	o reserva
A) 54	40 litros ()	D)	270 litros	()	
В) 36	00 litros ()	E)	200 litros	()	
C) 80	00 litros ()	F)	N. R. A.	()	
Use g =]	10^3 cm/s^2				

14ª QUESTÃO (0,5 positive de la compansión de la compansi	sura de 3	ente 0,00	de co	ndutivida cal seg. ^O C	o plano com de térmica tem uma ár	
Sendo o flux	o de calo					
		r por c				
	do, a dife					
faces, é:						
A)	400°C ()	D)	200°C ()	
в)	300°C ()	E)	100°C ()	
C)	150°C ()	F)	N.R.A)	

IME-CEA/1971	ME-CEA/1971 FÍSICA					INSCRIÇÃO NO Fls				
fica finai inicial é de será:	s são	os d	lôbr	ENUNCIADO monoatômi tal modo os dos valôres cão da energia	co sofrer que a pr iniciai	n uma essão s. Se	compresso e a masso a temper	são de sa espec <u>i</u> ratura		
sera:										
A)	170	cal	(D).	135 cal	()				
					135 cal					

IME-CEA/19 71	ME-CEA/19 71 FÍSI		INSCRIÇÃO NO	Fls. 16	
16 ª QUESTÃO (O	,5 pontos):	recipiente de	Coloca-se no inter	as - con-	
em equilibrio	térmico com		mas de á gua, inici r - uma certa quan		
			g. A temperatura a		
			a esta temperatur		
	_		50%; admitem-se t		
calor apenas					
A qua	ntidade de gê	lo que se fund:	lu até o momento e	m que se	
	ensação de um	idade na super	fície externa do r	ecipiente	
ē:					
A)	180 gramas() D.)	15 gramas()		
в)	75 gramas () E)	700 gramas()		
C)	30 gramas () F)	N. R. A.()		
TABE	LA DE PRESSÃO	MÁXIMA DE VAP	OR D'ÁGUA		
Te	mperatura	Pressão	máxima de vapor		
	(°C)	(kg	f/cm ²)		
	15	ó	,017360		
	16	0	,018527		
	17	0	,020400		
	18	0	,021030		

0,022390

SOLUÇÃO:

19

IME-CEA/19 71	FÍSICA			INSCRIÇÃO NO	Fls. 17
17ª QUESTÃO (0,	ideal de ter	nsi	Na caixa existe ão, de f.e.m. E,	e um resi <u>s</u>	
a potência em Fechando metro passa a te $I_2 = \frac{4}{3} I_1$. Os valore	Réde 90 wa a chave S, c	esistência nu atts. camper <u>í</u> corren-		indica uma corr	sente I ₁ e
gação são: A)	60 V; 612,	paralelo (;		
в)	50 V; 10_Ω	, série (;		
c)	36 V; 12 A	, paralelo (
D)	20 V; 20 🕰	, série (1		
E)	12 V; 24 Ω	, paralelo (;) 13	
F)	N. R. A.	(

IME-CEA/19 71

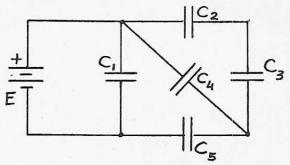
FÍSICA

INSCRIÇÃO NO____

Fls. 18

18ª QUESTÃO (0,5 pontos):

ENUNCIADO: Os capacitores da figura são de placas planas e paralelas, com dielétrico de ar; se, entre as placas


de C₅ , fôr introduzida, sem folga, uma lâmina de consta<u>n</u> te dielétrica 3, a variação da energia armazenada em C₅ serã:

A)
$$-2.5 \times 10^{-9}$$
 J (-)

B)
$$-1.25 \times 10^{-9} \text{J}$$
 ()

D)
$$2.5 \times 10^{-9} J$$
 ()

E)
$$1,25 \times 10^{-9} \text{J}$$
 ()

$$E = 100 V$$

$$c_2 = c_3 = 6\mu\mu F$$

$$C_5 = 4 \mu \mu F$$

	111112 1	JII - IROVA D	, E J F I	SICA				
IME-CEA/19 71	FÍSICA	A		INSCR	IÇÃO N9	0-40-	Fls	. 19
19 ª QUESTÃO (0,	5 pontos):	ENUNCIADO pêso e 1 m	-					
campo magnétic	o de indução	B=0,1 T, al	.ong	a a m	ola M,	isola	da e	pen-
durada do teto	, de 0,2 m al	lém de seu c	omp	rimen	to de r	epous	o. Ci	rcu-
lando uma corr	ente continua	I pela	4	7////	1111/1/1	/////	111	
barra, esta é	trazida a uma	nova			٨	1		
posição de equ	ilíbrio. Ouar	ndo a	X	×	XEX	\times	×	
corrente é des	ligada instar	ntâne <u>a</u>	X	×	xxx	×	×	
mente, a barra	passa a exec	cutar	X	×	××		×	
um movimento h	armônico simp	oles de			× ×	``p		
amplitude igua	la 0,1 m. A	inten-		. ^	XX	X	×	
sidade da corr	ente I é:							
A) 1	2A ()	D) 1.A	()				
в) 2	0A ()	E) 10A	()				
C)	5A ()	F) N P A	. (,				

IME-CEA/19_71	'A			INS	INSCRIÇÃO NO				0	
20 ª QUESTÃO (0	,5 pontos):	EN	UNC	ADO:	Uma	certa	sur	erfici	e metā	11-
		ca é	ilu	mina	da co	m luz	đe	compri	mento	đe
		onda	de	2000	Angs	trons				

Os eletrons ejetados têm uma energia cinética máxima de 3,315 x 10^{-19} J. A frequência de corte (frequência máxima em que não ocorre efeito fotoelétrico) desta superfície é:

A)
$$3 \times 10^{10} Hz$$
 () D) $10^{15} Hz$ ()

B)
$$5 \times 10^{20} Hz$$
 () E) $10^8 Hz$ ()

$$E) 10^8 Hz()$$

Constante de Planck: 6,630 x 10⁻³⁴ J.s

Velocidade da luz : $3,000 \times 10^8$ m/s