O termo independente de x, no desenvolvimento de $\left(x^2 + \frac{1}{x}\right)^9$ é:

- a) 84
- b) 83
- c) 82
- d) 80
- e) 78

02.

A área da base de uma pirâmide regular hexagonal é 1800 cm², e sua altura é de 48 cm. A uma distância d do vértice deve ser feita uma secção transversal de 50 cm² de área. O valor de d, em cm, pertence ao intervalo:

- a) $]\frac{1}{2}$, 3[b) $]\frac{5}{2}$, 5[c) $]\frac{9}{2}$, 7[d) $]\frac{13}{2}$, 10[e) $]\frac{19}{2}$, 12[

03.

Os valores reais de x que satisfazem a inequação $\left|\frac{5}{2x-1}\right| \ge \left|\frac{1}{x-2}\right|$ é a união de intervalos dada por:

a)
$$]-\infty,\frac{1}{2}[\cup]2,+\infty[$$

d)]
$$-\infty, \frac{1}{2} [\cup] \frac{1}{2}, \frac{11}{7}] \cup [3, +\infty[$$

b)
$$]-\infty,\frac{1}{2}[\cup[1,\frac{9}{5}[\cup[2,+\infty[$$
 e) $]-\infty,\frac{1}{7}]\cup[1,\frac{11}{7}]\cup]\frac{5}{2},+\infty[$

e)]
$$-\infty, \frac{1}{7}$$
] $\cup [1, \frac{11}{7}] \cup [\frac{5}{2}, +\infty[$

c)
$$]-\infty,\frac{1}{2}[\cup[3,+\infty[$$

04.

Para que o sistema $\begin{cases} det \begin{bmatrix} 0 & 1 & 1 \\ 2 & mx & 4 \\ 1 & 1 & y \end{bmatrix} = 1 \\ det \begin{bmatrix} 1 & x & 0 \\ 0 & y & 1 \end{bmatrix} = 3 \end{cases}$ tenha uma única solução, temos que ter:

- a) $m+n\neq 1$
- b) $m.n \neq 1$
- c) m + n > 2

- d) $m.n \neq 2$
- e) m.n < 2

ESCOLA NAVAL | MATEMÁTICA 1994 ou 1995 (Questões 1 a 25)

05.

Sendo $A=(a_{ij})_{3x4}$ onde $a_{ij}=\begin{cases} \frac{2^{i+j}}{4}; i< j\\ -i^2+j; i\geq j \end{cases}$ e $B=(b_{ij})_{3x3}$, onde $b_{ij}=i^2-2j$, o produto da transposta de A por $\frac{B}{2}$ é uma matriz C cujo elemento c_{32} é:

- a) -21
- b) -12
- c) 5
- d) 15
- e) 23

06.

Seja f(x) uma função real definida por $f(x) = \frac{1}{\sqrt{x-2}} + \ln(10 + 9x - x^2)$, o domínio de f(x) é constituído dos números reais pertencentes a:

a)
$$]-\infty,-1[\ \cup\]10,+\infty[$$

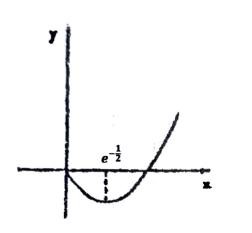
d)
$$]-1,10[$$

b)
$$[2, +\infty[$$

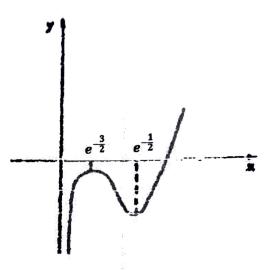
c)
$$[10, +\infty[$$

O gráfico da função $y=x^2lnx$ é:

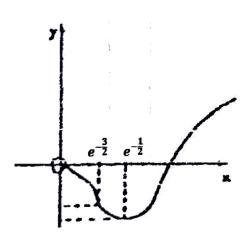
4)



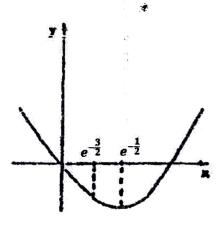
d)



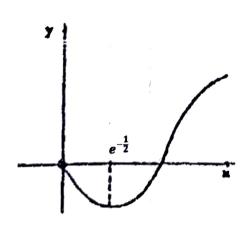
b)



e)



c)



Para que o resto da divisão de $P(x) = 8m^2x^3 + 12mx^2 - 2$ por Q(x) = 4x + 2 seja maior que zero, devemos ter:

- a) m > 1
- b) 0 < m < 2

- d) m < 0 ou m > 2
- e) 1 < m < 2

c) m < 1 ou m > 2

09.

Coloque, na coluna da direita, V quando a afirmação for verdadeira e F quando for falsa:

 $tg(22^{\circ}30') = -1 + \sqrt{2}$ I)

- Se $\frac{\pi}{2} < x < \pi$, e $tgx = -\frac{3}{4}$ então $cosx = \frac{3}{5}$ 1 + $sen20^\circ = 2sen^255^\circ$ II)

III)

Sendo a coluna da direita, de cima para baixo encontramos:

- a) F, F, V b) V, F, F c) V, F, V d) F, F, F e) F, V, F

10.

Dados doze pontos em um plano, dos quais somente cinco são colineares, o número de triângulos que podem ser formados com vértices em três dos doze pontos é:

- a) 120
- b) 180
- c) 210
- d) 280
- e) 320

11.

Sejam $z_1=2+bi, \ z_2=-1+3bi$ e $z_3=3-2i.$ O valor de b para que $z=\frac{2z_1+\overline{z_2}}{z_3}$

onde $\overline{z_2}$ é o conjugado de z_2 , seja real, pertence ao intervalo:

- a) [-4, -1[b) [-1, 3[
- c) [3, 7[d) [7, 11[
 - e) [11, 14[

O
$$\lim_{x\to 0} \frac{\sqrt{x+b} + \sqrt{x+a} - \sqrt{b} - \sqrt{a}}{x}$$
 é igual a:

a)
$$\frac{1}{\sqrt{a+b}}$$

a)
$$\frac{1}{\sqrt{a+b}}$$
 b) $\frac{1}{2\sqrt{b}} + \frac{1}{2\sqrt{a}}$ c) $\frac{1}{2\sqrt{a+b}}$ d) $\frac{1}{\sqrt{a+b}} + \frac{1}{2}$ e) $\frac{\sqrt{a+b}}{2}$

c)
$$\frac{1}{2\sqrt{a+b}}$$

d)
$$\frac{1}{\sqrt{a+b}} + \frac{1}{2}$$

e)
$$\frac{\sqrt{a+b}}{2}$$

13.

O plano ax + by + cz + d = 0 contém o ponto (2, 0, 5) e a reta de interseção dos planos x + y - z = 6 e 2x + 5y - 3z = 1. Podemos afirmar que (a + b + c + d) é múltiplo de:

- a) 42
- b) 35
- c) 29
- d) 21
- e) 18

14.

A base de uma pirâmide de vértice V é um hexágono regular ABCDEF sendo AB = 6 cm. A aresta lateral de VA é perpendicular ao plano da base e é igual ao segmento AD. A área do triângulo VCD é em cm²:

a)
$$18\sqrt{7}$$
 b) $6\sqrt{7}$ c) $18\sqrt{3}$ d) $7\sqrt{3}$ e) $6\sqrt{3}$

b)
$$6\sqrt{7}$$

c)
$$18\sqrt{3}$$

d)
$$7\sqrt{3}$$

e)
$$6\sqrt{3}$$

15.

Sabendo que $\vec{u}=2\vec{\imath}+\vec{\jmath}-3\vec{k}, \ \vec{u}=\vec{v}+\vec{w}$, onde \vec{v} é paralelo a $\vec{p}=3\vec{\imath}-\vec{\jmath}$ e \vec{w} é perpendicular a \vec{p} , podemos afirmar que $|\vec{v} - \vec{w}|$ é:

a)
$$\frac{\sqrt{27}}{4}$$

b)
$$\frac{\sqrt{37}}{4}$$

c)
$$\frac{\sqrt{19}}{2}$$

d)
$$\frac{\sqrt{35}}{2}$$

a)
$$\frac{\sqrt{27}}{4}$$
 b) $\frac{\sqrt{37}}{4}$ c) $\frac{\sqrt{19}}{2}$ d) $\frac{\sqrt{35}}{2}$ e) $\frac{\sqrt{56}}{2}$

16.

O número de soluções da equação:

$$(1 - \cos x) + \frac{(1 - \cos x)^2}{2} + \frac{(1 - \cos x)^3}{4} + \dots = 2$$
, para $0 \le x \le 4\pi$ é:

ESCOLA NAVAL | MATEMÁTICA 1994 ou 1995 (Questões 1 a 25)

17.

Simplificando a expressão $\frac{cotgx}{1+cotgx} + \frac{cotgx}{1-cotax}$, obtemos:

- a) –tg2x
- b) -cotg2x
- c) tg2x
- d) cotg2x
- e) 2cotgx

18.

Seja ABC um triângulo retângulo em A. Sabendo-se que o ângulo $\hat{\mathcal{C}}$ mede 20°, então o ângulo formado pela altura e a mediana relativas à hipotenusa é:

- a) 30°
- b) 40°
- c) 50°
- d) 60°
- e) 70°

19.

A função $f: R \to R$ tal que $f(x) = x^2 e^x$ é:

a) crescente, $\forall x \in R$

d) crescente, $\forall x > -2$

b) decrescente, $\forall x \leq 0$

e) decrescente, $\forall x \in]-2,0[$

c) crescente, $\forall x > -1$

20.

Se $f(x) = e^{3x} + (x+1)\cos x$, então f'(0) é igual a:

- a) 4
- b) 3
- c) 2
- d) 1
- e) 0

21.

Uma escada de 13 m de comprimento está apoiada a uma parede vertical e alta. No instante t_0 , a extremidade inferior, que se encontra a 5 m da parede, está escorregando, afastando-se da parede a uma velocidade de 2 m/s. A velocidade do topo da escada no instante t_0 é:

a)
$$-2 \text{ m/s}$$

b)
$$-\frac{5}{3}$$
 m/s

a)
$$-2 \text{ m/s}$$
 b) $-\frac{5}{3} \text{ m/s}$ c) $-\frac{5}{6} \text{ m/s}$ d) $\frac{1}{6} \text{ m/s}$

d)
$$\frac{1}{6}$$
 m/s

e) 1 m/s

A integral $\int \sqrt{1+9x} \, dx$ é:

a)
$$\frac{2}{27}(1+9x)^{\frac{3}{2}}+c$$

d)
$$\frac{2}{9}(1+9x)^{\frac{1}{2}}+c$$

e) $\frac{\sqrt{1+9x}}{3}+c$

b)
$$\frac{2}{3}(1+9x)^{\frac{3}{2}}+c$$

e)
$$\frac{\sqrt{1+9x}}{3} + a$$

c)
$$\frac{1+9x}{3} + c$$

23.

A equação $x^2 + 2y^2 - 3xy + x - 3y - 2 = 0$ representa

a) Uma circunferência

d) Um par de retas

b) Uma parábola

e) Apenas um ponto

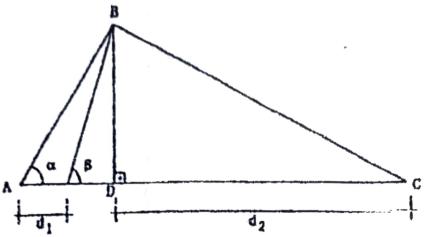
c) Uma hipérbole

24.

O volume do paralelepípedo cujas arestas adjacentes são os vetores $\vec{i} + \vec{j} + 2\vec{k}$; $3\vec{i} - \vec{j}$ e $5\vec{i} + 2\vec{j} - \vec{k}$ é:

- a) 2
- b) 14
- c) 18
- d) 26
- e) 28

Considere a figura:



A área do triângulo BCD é:

a)
$$\frac{d_1+d_2}{cotg\alpha-cotg\beta}$$

d)
$$\frac{d_1.d_2}{2cotg\alpha+cotg\beta}$$

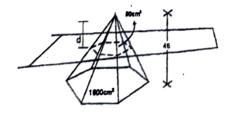
b)
$$\frac{d_1.d_2}{2(cotg\alpha+cotg\beta)}$$

e)
$$\frac{d_1.d_2}{2(cotg\alpha-cotg\beta)}$$

c)
$$\frac{d_1 + d_2}{2(\cot g\alpha - \cot g\beta)}$$

01.
$$T_{p+1} = \binom{n}{p} (x^2)^{n-p} \left(\frac{1}{x}\right)^p \implies T_{p+1} = \binom{n}{p} n^{2n-3p} \pmod{n}$$

02.



$$\frac{d^2}{50} = \frac{48^2}{1800} \Rightarrow \frac{d^2}{1} = \frac{48^2}{36} = \left(\frac{48}{6}\right)^2 \Rightarrow d = 8cm \Rightarrow$$
$$\Rightarrow d \in \left[\frac{13}{2}, 10\right]$$

03.
$$\left| \frac{5}{2x-1} \right| - \left| \frac{1}{x-2} \right| \ge 0$$

$$i) \quad x < \frac{1}{2} \Rightarrow \begin{cases} 2x - 1 < 0 \\ x - 2 < 0 \end{cases} \Rightarrow \frac{-5}{2x - 1} - \left(\frac{-1}{x - 2}\right) \ge 0 \Rightarrow \frac{-5x + 10 + 2x - 1}{(2x - 1)(x - 2)} \ge 0 \Rightarrow -3x + 9 \ge 0 \Rightarrow x \le 3 \Rightarrow x < \frac{1}{2}$$
 (i)

$$ii) \quad \frac{1}{2} < x < 2 \Rightarrow \begin{cases} 2x - 1 > 0 \\ x - 2 < 0 \end{cases} \Rightarrow \frac{5}{2x - 1} - \left(\frac{-1}{x - 2}\right) \ge 0 \Rightarrow \frac{5x - 10 + 2x - 1}{(2x - 1)(x - 2)} \ge 0 \Rightarrow 7x - 11 \le 0 \Rightarrow x \le \frac{11}{7} \stackrel{\text{(ii)}}{\Rightarrow} \frac{1}{2} < x \le \frac{11}{7} \stackrel{\text{(ii)}}{\Rightarrow} \frac{1}{2} < x \le \frac{11}{7} \stackrel{\text{(iii)}}{\Rightarrow} \frac{1}{2}$$

iii) x > 2
$$\Rightarrow$$
 $\begin{cases} 2x-1>0 \\ x-2>0 \end{cases} \Rightarrow \frac{5}{2x-1} \frac{1}{x-2} \ge 0 \Rightarrow \frac{5x-10-2x+1}{(2x-1)(x-2)} \ge 0 \Rightarrow 3x-9 \ge 0 \Rightarrow x \ge 3 \Rightarrow 0 \Rightarrow 0$

Ορςδο D

$$\mathbf{04.} \begin{cases} 4+2-mx-2y=1 \\ ny+x-1=3 \end{cases} \Rightarrow \begin{cases} mx+2y=5 \\ x+ny=4 \Rightarrow x=4-ny \end{cases}$$
$$\Rightarrow 4m+(2-mn)y=5 \Rightarrow y=\frac{5-4m}{2-mn} \therefore SPD \Rightarrow 2-mn \neq 0 \Rightarrow mn \neq 2$$

Opção D

05.
$$C = A^{1} \cdot \frac{B}{2} \Rightarrow C_{jk} = \sum_{l=1}^{3} (a_{1j})^{1} \cdot \frac{1}{2} b_{1k} = \frac{1}{2} \sum_{i=1}^{3} a'_{1j} \cdot b_{1k} \Rightarrow C_{32} = \frac{1}{2} \sum_{i=1}^{3} a'_{3i} \cdot b_{1k} = \frac{1}{2} [a_{13}b_{12} + a_{23}b_{22} + a_{33}b_{32}] = \frac{1}{2} \left[\frac{2^{1+3}}{4} \cdot (1^{2} - 2.2) \right] + \frac{2^{2+3}}{4} \cdot (2^{2} - 2.2) + (-3^{2} + 3)(3^{2} - 2.2) = \frac{1}{2} [-12 + 0 - 30] = -21$$
Opcão A

06.
$$\begin{cases} x-2>0 \Rightarrow x>2 & \text{(i)} & \text{(i)} \cap \text{(ii)} \\ 10+9x-x^2>0 \Rightarrow 1< x<10 & \text{(ii)} \end{cases} \Rightarrow 2< x<10$$

Opção E

07. No ℓn: condição de existência ⇒ x > 0

$$y = x^2 \ln x \Rightarrow y' = 2x \cdot \ln x + x^2 \frac{1}{x} = x(2 \ln x + 1)$$

$$0 = y' = x(2\ell nx + 1) \Rightarrow \ell nx = -\frac{1}{2} \Rightarrow x = \ell^{\frac{1}{2}}$$

$$y'' = 1.(2\ell nx + 1) + x \cdot \left(2 \cdot \frac{1}{x}\right) = 2\ell nx + 3 \implies y'' \left(\ell^{\frac{1}{2}}\right) = 2 > 0 \implies \ell^{\frac{1}{2}} \text{ dá ponto de mínimo.}$$

 $y''=0 \Rightarrow x=\ell^{\frac{3}{2}} \Rightarrow \ell^{\frac{3}{2}}$ dá ponto de inflexão, mas note que não deu ponto de tangente horizontal!

Opção B

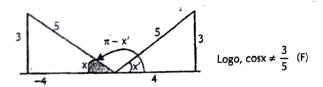
08.
$$P(x) = 8m^2x^3 + 12mx^2 - 2$$

 $Q(x) = 4x + 2$
 $8m^2x^3 + 12mx^2 + 0x - 2$ $4x + 2$
 $4m(3-m)x^2 + 0x - 2$
 $-4m(3-m)x^2 - 2m(3-m)x$
 $-2m(3-m)x - 2$
 $-2m(3-m)x - 2$
 $-2m(3-m)x + m(3-m)$
 $-2m(3-m)x + m(3-m)$
 $-2m(3-m)x + m(3-m)$
 $-2m(3-m)x + m(3-m)$

Opção E

09. i)
$$tg(22^{\circ}30') = -1 + \sqrt{2}$$

$$tg\left(\frac{45}{2}\right) = \sqrt{\frac{1 - \cos 45^{\circ}}{1 + \cos 45^{\circ}}} \quad (V)$$
ii) $se \frac{\pi}{2} < x < \pi, e tgx = -\frac{3}{4} então cosx = -\frac{4}{5}$



iii)
$$1 + \text{sen}20^\circ = 2\text{sen}^255^\circ \implies (V)$$

 $\Rightarrow -\text{sen}20^\circ = 1 - 2\text{sen}^255^\circ = \cos 110^\circ = \cos (90^\circ + 20^\circ) \implies \text{ok!}$

Opção C

10.
$$N = C_{12}^3 - C_5^3 = 210$$

Opção C

11.
$$z_1 = 2 + bi$$
, $z_2 = -1 + 3bi$, $z_3 = 3 - 2i$

$$z = \frac{2z_1 + \overline{z}_2}{z_3} \Rightarrow \frac{4 + 2bi - 1 - 3bi}{3 - 2i} = \left(\frac{3 - bi}{3 - 2i}\right) \frac{(3 + 2i)}{(3 + 2i)} \Rightarrow z = \frac{9 + 2b}{13} + \left(\frac{6 - 3b}{13}\right)i \quad z \in \mathbb{R} \Rightarrow lm(z) = 0$$

$$6 - 3b = 0 \Rightarrow b = 2$$

Opção B

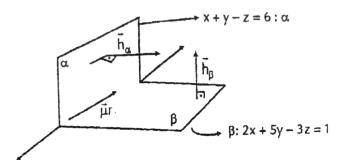
12.
$$\lim_{x \to 0} \frac{\sqrt{x+b} + \sqrt{x+a} - \sqrt{b} - \sqrt{a}}{x} = \lim_{x \to 0} \frac{\sqrt{x+b} - \sqrt{b}}{x} + \lim_{x \to 0} \frac{\sqrt{x+a} - \sqrt{a}}{x} \Rightarrow$$

$$\Rightarrow \lim_{x \to 0} \frac{\sqrt{x+b} - \sqrt{b}}{x} \cdot \frac{\sqrt{x+b} + \sqrt{b}}{\sqrt{x+b} + \sqrt{b}} + \lim_{x \to 0} \frac{\sqrt{x+a} - \sqrt{a}}{x} \cdot \frac{\sqrt{x+a} + \sqrt{a}}{\sqrt{x+a} + \sqrt{a}} \Rightarrow$$

$$\Rightarrow \lim_{x \to 0} \frac{\sqrt{x+b} + \sqrt{b}}{x} + \lim_{x \to 0} \frac{\sqrt{x+a} + \sqrt{a}}{x} \Rightarrow \lim_{x \to 0} \frac{\sqrt{x+a} + \sqrt{a}}{x$$

Opção B

13.

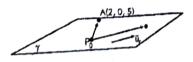


$$\vec{n}_{\beta} \perp \vec{u}_{r} \ e \ \vec{n}_{\alpha} \perp \vec{u}_{r} \Rightarrow \vec{u}_{r} = \vec{n}_{\beta} \times \vec{n}_{\alpha} \Rightarrow$$

$$\Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{n} \\ 1 & 1 & -1 \\ 2 & 5 & -3 \end{vmatrix} = (2, 1, 3)$$

$$P_0 \in \gamma \implies \begin{cases} x - z = 6 & \Rightarrow z = 11 \\ 2x - 3z = 1 & x = 17 \end{cases}$$

$$P_0(17, 0, 11)$$



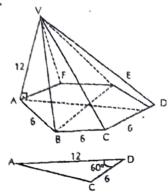
$$\overrightarrow{n\gamma} = \overrightarrow{AP_0} \times \overrightarrow{u_r} \implies \begin{vmatrix} \hat{i} & \hat{j} & \hat{n} \\ 15 & 0 & 6 \\ 2 & 1 & 3 \end{vmatrix} = 3.\left(-\frac{2,-11,5}{n\gamma}\right)$$

$$\gamma$$
: $-2x - 11y + 5z + D = 0$
 $A \in \gamma \implies -2 \cdot 2 - 11 \cdot 0 + 5 \cdot 5 + D = 0$

$$a + b + c + d = -29$$

Opção C

14.



$$\overline{AV}^2 + \overline{AC}^2 = \overline{VC}^2$$

$$108 + 144 = \overline{VC}^2 \implies VC = 6\sqrt{7}$$

Opção C

$$\overline{AD} = 12$$

 $\overline{VA} = 12$
 $\overline{VD}^2 = 144.2 = 288 \Rightarrow \overline{VD} = 12\sqrt{2}$
 $VB^2 = 12^2 + 6^2$
 $VB^2 = 144 + 36 = 180$
 $VB = 6\sqrt{5}$ cm $\overline{VB} = \overline{VF}$ $VC = \frac{2}{3}$

$$\overline{AC}^2 = 144 + 36 - 2.12 \cdot 6 \cdot \frac{1}{2} (\rightarrow \text{Lei dos cos}) \Rightarrow$$

$$\Rightarrow \overline{AC}^2 = 108 \Rightarrow \text{Note que: } (12\sqrt{2})^2 = 6^2 + (6\sqrt{7})^2 \Rightarrow$$

$$\Rightarrow \overline{VD}^2 = \overline{CD}^2 + \overline{VC}^2 \Rightarrow V\hat{CD} = 90^\circ \Rightarrow S_{\text{AVCD}} = \frac{1}{2} \cdot 6 \cdot 6\sqrt{7} = 18\sqrt{7}$$

15. Sejam
$$\vec{v} = (v_1, v_2, v_3) \ e \ \vec{w} = (w_1, w_2, w_3) \ \therefore \ \vec{w} \perp \vec{p} = (3, -1, 0) \Rightarrow 0 = \vec{w} \cdot \vec{p} = 3w, -w_2 + 0 \Rightarrow w_2 = 3w_1 \Rightarrow \vec{w} = (w_1, 3w_1, w_3) \ \therefore \ \vec{v} / / \vec{p} = (3, -1, 0) \Rightarrow \begin{cases} \vartheta_1 = 3k \\ \vartheta_2 = -1 \cdot k \\ \vartheta_3 = 0 \cdot k = 0 \end{cases} \Rightarrow \vartheta_1 = -3\vartheta_2 \Rightarrow \vec{v}(-3\vartheta_2, \vartheta_2, 0) \ \therefore (2, 1, -3) = \vec{u} = \vec{v} + \vec{w} = (w_1 - 3\vartheta_2, 3w_1 + \vartheta_2, w_3) \Rightarrow \begin{cases} w_1 - 3\vartheta_2 = 2 \Rightarrow w_1 = 2 + 3\vartheta_2 \\ 3w_1 + \vartheta_2 = 1 \end{cases} \Rightarrow 6 + 9\vartheta_2 + \vartheta_2 = 1 \Rightarrow \vartheta_2 = -\frac{1}{2} \Rightarrow w_1 = \frac{1}{2}$$

$$\text{Dal}(\vec{v} = (\frac{3}{2}, -\frac{1}{2}, 0)) \ e \ \vec{w} = (\frac{1}{2}, \frac{3}{2}, -3) \Rightarrow \vec{v} - \vec{w} = (1, -2, 3) \Rightarrow |\vec{v} - \vec{w}| = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{14} = \frac{\sqrt{56}}{2}$$

Opção E

16.
$$1-\cos x + \frac{(1-\cos x)^2}{2} + \frac{(1-\cos x)^3}{4} = \dots = 2$$

$$= (1-\cos x) \left[1 + \frac{1-\cos x}{2} + \frac{(1-\cos x)^2}{2^2} + \dots \right] = 2 = (1-\cos x) \left[\frac{1}{1-\frac{1}{2} + \frac{\cos x}{2}} \right] = 2 \Rightarrow \frac{2(1-\cos x)}{1+\cos x} = 2$$

$$\cos x = 0 \qquad 0 \le x \le 4\pi$$

Logo, 4 soluções.

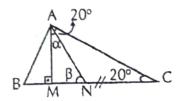
Opção D

Opção A

17.
$$\frac{\cos gx}{1 + \cot gx} + \frac{\cos gx}{1 - \cos tgx}$$

$$= \frac{(1 - \cot gx)\cot gx + (1 + \cot gx)\cot gx}{(1 + \cot gx)(1 - \cot gx)} = \frac{2\cot gx}{1 - \cot g^2x} = \frac{2\cos x}{\sec x} \cdot \left[\frac{1}{1 - \frac{\cos^2 x}{\sec^2 x}} \right] = \frac{2\cos x}{\sec^2 x} \left[\frac{\sin^2 x}{\sec^2 x - \cos^2 x} \right] = \frac{-\cos 2x}{-\cos 2x} = -tg2x$$

18.



 $\beta = 20^{\circ} + 20^{\circ} = 40^{\circ} \Rightarrow \alpha = 90^{\circ} - 40^{\circ} = 50^{\circ}$

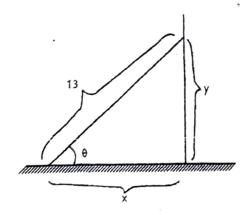
Орçãо С

19. f decresce
$$\Rightarrow 0 > f' = e^{x}(x^2 + 2x) \Rightarrow -2 < x < 0$$
, pois $e^{x} \neq 0$
Opção E

20.
$$f' = e^{3x} \cdot 3 + (1 \cdot \cos x + (x + 1)(-\sin x)) \Rightarrow f'\cos = 1 \cdot 3 + [1 \cdot 1 + (1) \cdot (-0)] = 4$$

Opção A

21.



- 1) $y = 13 \text{sen}\theta$, $x = 13 \text{cos}\theta \Rightarrow dy = 13 \text{cos}\theta d\theta$, $dx = -13 \text{sen}\theta d\theta \Rightarrow \frac{dx/dt}{dy/dt} = -tg\theta \Leftrightarrow \frac{\forall x}{\forall y} = -tg\theta$
- 2) Para t_0 , tem-se que: $\cos\theta = \frac{5}{13}$ $\therefore 1 + tg^2\theta = \sin^2\theta \Leftrightarrow$ $1 + tg^2\theta = \frac{169}{25} \Leftrightarrow tg^2\theta = \frac{144}{25} \Rightarrow tg\theta = \frac{12}{5} \Rightarrow \frac{\sqrt{x}}{\sqrt{y}} = -\frac{12}{5} \Rightarrow \frac{(\sqrt{x} = 2)}{\sqrt{y}} = -\frac{12}{5} \Rightarrow |\sqrt{y}| = \frac{5}{6}$

Opção C

22. 1)
$$I = \int \sqrt{1 + 9x} dx$$
 : $1 + 9x = u \Rightarrow du = 9dx \Leftrightarrow dx = \frac{du}{9} \Rightarrow I = \frac{1}{9} \int \sqrt{u} du = \frac{1}{9} \left[\frac{2}{3} \cdot u^{312} \right] + C = \frac{2}{27} (1 + 9x)^{312} + C$
Opção A

23. A equação dada é um caso, especialíssimo, que pode ser solucionado resolvendo-se a equação em x. Com efeito:

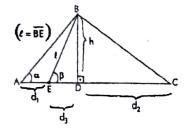
 \Rightarrow $x^2 + (1 - 3y)x + (2y^2 - 3y - 2) = 0 <math>\Rightarrow$ $\Delta = (y + 3)^2$ (quadrado perícito!) \Rightarrow $x = 2y + 1 \lor x = y - 2$. Logo, a equação em causa representa um par de retas.

Opção D

24. 1) Como foram dados três vetores, este problema é um exemplo do produto misto daqueles vetores, o qual, por definição, dá o volume V de um paralelepípedo de desenvoltura especial. Com efeito, por definição, tem-se: V = módulo((1, 1, 2) . (3, -1, 0) x (5, 2, -1)) (*).

2)
$$(3, -1, 0) \times (5, 2, -1) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} & \vec{i} & \vec{j} \\ 3 & -1 & 0 & 3 & -1 \\ 5 & 2 & -1 & 5 & 2 \end{vmatrix} = \vec{i} + 6\vec{k} + 5\vec{k} + 3\vec{j} = (1, 3, 11) \Rightarrow (1, 1, 2) \cdot (3, -1, 0) \times (5, 2, -1) = (1, 1, 2) \cdot (1, 3, 11) = 1 + 3 + 22 = 26 \Rightarrow V = 26$$
Opção D

25.



1)
$$A_{BCD} = \frac{1}{2} \cdot d_2 \cdot h$$

2)
$$h = t sen \beta = t = \frac{h}{sen \beta}$$

3)
$$d_3 = \ell \cos \beta = h \cot \beta$$

4)
$$\frac{h}{d_1 + d_3} = tg\alpha \xrightarrow{(3)} \frac{h}{d_1 + h \cot g\beta} = tg\alpha \Rightarrow h = d_1 \cdot tg\alpha + (tg\alpha \cdot \cot g\beta) \cdot h \Rightarrow$$

$$\Rightarrow h = \left(\frac{tg\alpha}{1 - tg\alpha \cdot \cot g\beta}\right) d_1 \xrightarrow{(1)} A_{BCD} = \frac{1}{2} \left(\frac{tg\alpha}{1 - tg\alpha \cdot \cot g\beta}\right) d_1 d_2 = \frac{1}{2} \left(\frac{1}{\cot g\alpha} \cdot \frac{\cot g\alpha}{\cot g\alpha - \cot g\beta}\right) d_1 d_2 \Rightarrow$$

$$\Rightarrow A_{BCD} = \frac{d_1 \cdot d_2}{2(\cot g\alpha - \cot g\beta)}$$

Opção E