Universidade Anhembi Morumbi 2018 - MEDICINA

PROVA DE CONHECIMENTOS ESPECÍFICOS

Questão 1. Aditivo alimentar é toda e qualquer substância química adicionada intencionalmente aos alimentos sem o propósito de nutrir, com o objetivo de modificar as características físicas, químicas, biológicas ou sensoriais, durante a fabricação, processamento, preparação, tratamento, embalagem, acondicionamento, armazenagem, transporte ou manipulação de um alimento.

(http://portal.anvisa.gov.br. Adaptado.)

A tabela fornece o resultado da análise de dois alimentos, indicando o aditivo utilizado.

Alimento	Aditivo					
panetone	NaHCO ₃					
salame	NaNO ₃					

- **a)** Identifique o cátion e o ânion do aditivo químico adicionado na fabricação do salame. Dê o nome da ligação química formada entre eles.
- **b)** Considere que o aditivo alimentar adicionado na preparação do panetone, ao sofrer decomposição, produza carbonato de sódio (Na_2CO_3) , gás carbônico (CO_2) e água, e que a constante R seja 0.082 atm \times L/mol \times K. Escreva a equação balanceada que representa a reação de decomposição desse aditivo. Calcule o volume máximo, em litros, de gás carbônico liberado na decomposição de 4,20 g desse aditivo a 27 °C e 1 atm.

Resolução:

a) Identificação do cátion e do ânion presentes no NaNO3:

Na⁺ : cátion sódio NO₃⁻ : ânion nitrato

Nome da ligação química: ligação iônica ou eletrovalente.

b) Equação balanceada que representa a reação de decomposição do NaHCO₃:

$$2 \, \text{NaHCO}_3 \xrightarrow{\quad \text{Decomposição} \quad} 1 \, \text{Na}_2 \text{CO}_3 \ + \ 1 \, \text{CO}_2 \ + 1 \, \text{H}_2 \text{O}$$

PROFESSORA SONIA

Cálculo do volume máximo, em litros, de gás carbônico liberado na decomposição do NaHCO3:

$$NaHCO_3 = 1 \times 23 + 1 \times 1 + 1 \times 12 + 3 \times 16 = 84$$

 $M_{NaHCO_2} = 84 \text{ g} \cdot \text{mol}^{-1}$

$$n_{CO_2} = \frac{4,20 \text{ g} \times 1 \text{ mol}}{2 \times 84 \text{ g}} = 0,025 \text{ mol}$$

$$n_{CO_2} = 0,025 \text{ mol}$$

P = 1 atm

$$T = 27 + 273 = 300 \text{ K}$$

$$R = 0.082 \frac{atm \times L}{mol \times K}$$

$$P \times V_{CO_2} = n_{CO_2} \times R \times T$$

$$1~atm \times V_{CO_2} = 0,025~mol \times 0,082~\frac{atm \times L}{mol \times K} \times 300~K$$

$$V_{CO_2} = 0,615~L$$

Questão 2. Os fosfatos oferecem uma contribuição nutricional essencial para o crescimento e o metabolismo humano. O cálcio, sob a forma de fosfato $\left[\text{Ca}_3(\text{PO}_4)_2\right]$, é o principal material inorgânico que compõe o osso, sendo responsável por $\frac{2}{3}$ de seu peso.

Industrialmente, os fosfatos solúveis, como o fosfato de potássio (K_3PO_4) , são utilizados em larga escala na agricultura e no tratamento do solo para renovação de culturas.

- a) Uma solução aquosa do fosfato de potássio é boa ou má condutora de eletricidade? Justifique sua resposta.
- **b)** Considere que, a 25 °C, uma solução aquosa de fosfato de cálcio tenha concentração de 0,25 mol/L e apresente grau de dissociação (α) igual a 60 %. Calcule o valor da concentração, em mol/L, dos ânions fosfatos liberados nessa solução. Apresente os cálculos efetuados.

PROFESSORA SONIA

Resolução:

a) Fosfatos do grupo 1 da tabela periódica são solúveis em água. Uma solução aquosa do fosfato de potássio (K₃PO₄) é boa condutora de eletricidade, pois este composto sofre dissociação iônica e forma ions livres em solução aquosa.

$$1K_3PO_4 \xrightarrow{H_2O} 3K^+ + 1PO_4^{3-}$$

b) Cálculo do valor da concentração em mol/L, dos ânions fosfatos (PO_4^{3-}) liberados:

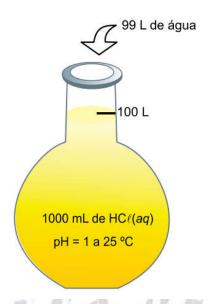
$$\left[PO_4^{3-} \right] = 2(\alpha \times 0, 25) \text{ mol / L}$$

$$\alpha = 60 \% = \frac{60}{100}$$

$$\left[PO_4^{3-}\right] = 2\left(\frac{60}{100} \times 0, 25\right) \mod / L$$

$$\left[PO_4^{3-} \right] = 0.30 \text{ mol/L}$$

Outro modo de resolução:


$$2 \times 0.25 \text{ mol/}_{L} \text{ de PO}_{4}^{3-} = 100 \%$$

$$\left[PO_{4}^{3-}\right] = 60 \% \times 2 \times 0.25 \text{ mol/}_{L}$$

$$\left[PO_{4}^{3-}\right] = \frac{60 \% \times 2 \times 0.25 \text{ mol/}_{L}}{100 \%}$$

$$\left[PO_{4}^{3-}\right] = 0.30 \text{ mol/} L$$

Questão 3. Observe a ilustração.

- a) Escreva a fórmula eletrônica de Lewis para o HC ℓ e a fórmula estrutural da água.
- **b)** Considere que a solução aquosa de HC ℓ contida no balão apresenta grau de ionização 100 %. Determine o valor do pH, a 25 °C, da nova solução formada após a adição do volume de água. Apresente os cálculos efetuados

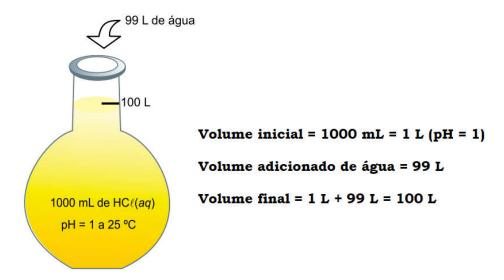
Resolução:

a) Fórmula eletrônica de Lewis para o HCl:

H: grupo 1 (1 e de valência); estabiliza com 2 e

Cℓ: grupo 17 (7 e⁻ de valência), estabiliza com 8 e⁻

н : ci :


Fórmula estrutural da água:

H: grupo 1 (1 e de valência) \Rightarrow faz uma ligação covalente

O: grupo 16 (6 e de valência) \Rightarrow faz duas ligações covalentes

H_O_H

b) Determinação o valor do pH da nova solução formada:

$$\begin{split} pH &= 1 \text{ (início)} \\ pH &= -log \Big[H^+\Big]_{inicial} \\ 1 &= -log \Big[H^+\Big]_{inicial} \\ \Big[H^+\Big]_{inicial} &= 10^{-1} \text{ mol} \cdot L^{-1} \end{split}$$

Diluição:

$$\begin{split} & \left[H^{+}\right]_{inicial} \times V_{inicial} = \left[H^{+}\right]_{final} \times V_{final} \\ & 10^{-1} \ mol \cdot L^{-1} \times 1 \ L = \left[H^{+}\right]_{final} \times 100 \ L \\ & \left[H^{+}\right]_{final} = \frac{10^{-1} \ mol \cdot L^{-1} \times 1 \ L}{100 \ L} \\ & \left[H^{+}\right]_{final} = 10^{-3} \ mol \cdot L^{-1} \end{split}$$

pH (nova solução) =
$$-\log[H^+]_{final}$$

pH (nova solução) = $-\log 10^{-3}$
pH (nova solução) = 3

Questão 4. A benzedrina é uma droga estimulante que ativa o sistema nervoso central. Como medicamento, ela pode ser utilizada no tratamento de pacientes que sofrem de depressão.

benzedrina

- **a)** Escreva a fórmula molecular da benzedrina. Indique a função química orgânica a que ela pertence.
- b) Dê o nome dos dois isômeros opticamente ativos da benzedrina.

Resolução:

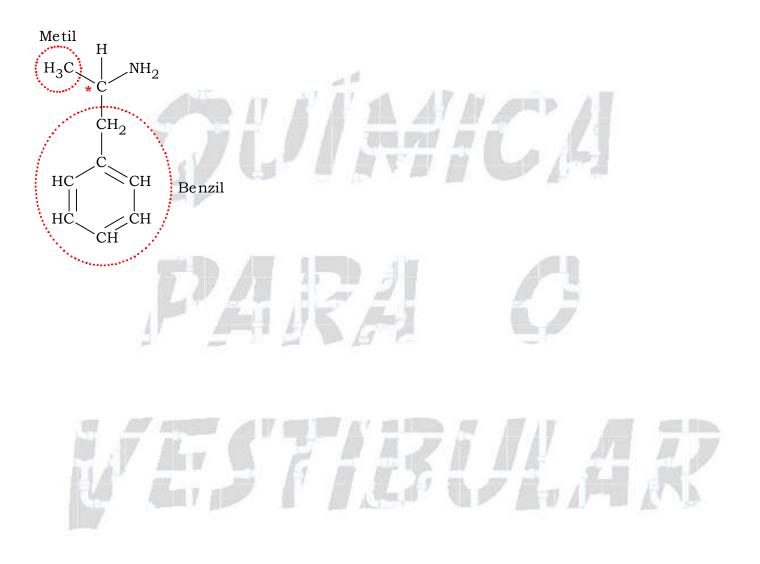
a) Fórmula molecular da benzedrina: C₉H₁₃N.

Função química orgânica: amina.

PROFESSORA SONIA

b) A Benzedrina apresenta um átomo de carbono assimétrico ou quiral (*átomo de carbono ligado a quatro ligantes diferentes entre si), por isso é opticamente ativa, ou seja, apresenta os isômeros destrógiro e levógiro.

Nome dos dois isômeros opticamente ativos (destrógiro e levógiro) da benzedrina:


d – benzil – metila min a

 ℓ – benzil – metila min a

ou

d – benzidrina

 ℓ – benzidrina

Dado:

1					C	LASSIFI	CAÇÃ	PERIO	ÓDICA								18
1 H hidrogênio 1,01	2											13	14	15	16	17	2 He hélio 4,00
3 Li litio 6,94	4 Be berilio 9,01											5 B boro 10,8	6 C carbono 12,0	7 N nitrogênio 14,0	8 O oxigênio 16,0	9 F flúor 19,0	10 Ne neônio 20,2
11 Na sódio 23,0	12 Mg magnésio 24,3	3	4	5	6	7	8	9	10	11	12	13 Al alumínio 27,0	14 Si silicio 28,1	15 P fósforo 31,0	16 S enxofre 32,1	17 CI cloro 35,5	18 Ar argônio 40,0
19 K potássio 39,1	20 Ca cálcio 40,1	21 Sc escândio 45,0	22 Ti titânio 47,9	23 V vanádio 50,9	24 Cr crômio 52,0	25 Mn manganês 54,9	26 Fe ferro 55,8	27 Co cobalto 58,9	28 Ni niquel 58,7	29 Cu cobre 63,5	30 Zn zinco 65,4	31 Ga gálio 69,7	32 Ge germânio 72,6	33 As arsênio 74,9	34 Se selênio 79,0	35 Br bromo 79,9	36 Kr criptônio 83,8
37 Rb rubidio 85,5	38 Sr estrôncio 87,6	39 Y itrio 88,9	40 Zr zircônio 91,2	41 Nb nióbio 92,9	42 Mo molibdênio 96,0	43 Tc tecnécio	44 Ru rutênio 101	45 Rh ródio 103	46 Pd paládio 106	47 Ag prata 108	48 Cd cádmio 112	49 In Indio 115	50 Sn estanho 119	51 Sb antimônio 122	52 Te telúrio 128	53 I iodo 127	54 Xe xenônio 131
55 Cs césio 133	56 Ba bário 137	57-71 lantanoides	72 Hf háfnio 178	73 Ta tāntalo 181	74 W tungstěnio 184	75 Re rênio 186	76 Os ósmio 190	77 Ir iridio 192	78 Pt platina 195	79 Au ouro 197	80 Hg mercúrio 201	81 TI tálio 204	82 Pb chumbo 207	83 Bi bismuto 209	84 Po polônio	85 At astato	86 Rn radônio
87 Fr frâncio	88 Ra rádio	89-103 actinoides	104 Rf rutherfórdio	105 Db dúbnio	106 Sg seabórgio	107 Bh bóhrío	108 Hs hássio	109 Mt meitnério	110 Ds darmstádio	111 Rg roentgênio	112 Cn copernício	113 Nh nihônio	114 FI fleróvio	115 Mc moscóvio	116 Lv livermório	117 Ts tenessino	118 Og oganessônio

YOUR	nero atômico Símbolo
	nome
ma	ssa atômica

57 La lantânio 139	58 Ce cério 140	59 Pr praseodimio 141	60 Nd neodímio 144	61 Pm promécio	62 Sm samário 150	63 Eu európio 152	64 Gd gadolinio 157	65 Tb térbio 159	66 Dy disprésio 163	67 Ho hólmio 165	68 Er érbio 167	69 Tm túlio 169	70 Yb itérbio 173	71 Lu lutécio 175
89 Ac actínio	90 Th tório 232	91 Pa protactinio 231	92 U urānio 238	93 Np neptúnio	94 Pu plutônio	95 Am americio	96 Cm cúrio	97 Bk berquélio	98 Cf califórnio	99 Es einstênio	100 Fm férmio	101 Md mendelévio	102 No nobělio	103 Lr laurêncio

Notas: Os valores de massas atômicas estão apresentados com três algarismos significativos. Não foram atribuídos valores às massas atômicas de elementos artificiais ou que tenham abundância pouco significativa na natureza. Informações adaptadas da tabela IUPAC 2016.

